Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative.
This standard is developed in accordance with the rules given in GB/T 1.1-2009.
This standard replaces GB/T 11023-1989 Test guide of SF6 gas tightness for high-voltage switchgear and the following main technical changes have been made with respect to GB/T 11023-1989:
——the clause "Normative references" is added, and subsequent clause numbers are modified (see Clause 2);
——relevant terms and definitions including "gas-filled compartment" and "controlled pressure system for gas" are added (see Clause 3);
——the general of test items is adjusted; the calculation method of permissible leakage rate Fp based on the limit of relative yearly leakage rate Fy is added; the limit of permissible leakage rate is added; the recommended method to obtain accurate volume of measurement is given, and the contents of the Annex A in original standard are moved into this subclause and modified (see 4.1);
——the acceptable ambient temperature is added in the tightness test at normal temperature (see 4.2);
——the contents unrelated to the tightness test in high- and low-temperature tightness tests are adjusted (see 4.3);
——5.1.4 "Leakage detecting by infrared imaging" and 5.1.5 "Leakage detecting with helium mass spectrometer" are added in the qualitative leakage detecting (see 5.1);
——the sequence of the four test methods in quantitative leakage detecting is adjusted; the calculation equation is adjusted to the calculation method using tracer gas; the standing time after air inflation and the time after bandaging are uniformly specified (see 5.2);
——in the buckle cover method, the relationship between the time between replenishments, T, and the relative yearly leakage rate, Fy, is added (see 5.2.2);
——in the pressure drop method, the calculation method of relative daily leakage rate, Fd, and number of replenishments per day, N, for the controlled pressure system for gas is added (see 5.2.4);
——relevant examples are added in Annexes A and B (see Annexes A and B);
——Annex C "Principle and spectrum examples of infrared imaging sniffing" is added (see Annex C).
This standard was proposed by China Electrical Equipment Industrial Association.
This standard is under the jurisdiction of the National Technical Committee on High-voltage Switch Gear of Standardization Administration of China (SAC/TC 65).
The previous edition of this standard is as follows:
——GB/T 11023-1989.
Test method of SF6 gas tightness for high-voltage switchgear
1 Scope
This standard specifies the terms and definitions, test items and test methods of SF6 gas tightness for high-voltage switchgear.
The test method specified in this standard is used to determine the relative yearly leakage rate of switchgear/compartment.
This standard is applicable to the test of gas tightness for high-voltage switchgear with SF6 gas as insulation and/or arc-extinguishing medium.
Note: This standard may serve as a reference for the test of gas tightness for high-voltage switchgear with other gases as operation, insulation and/or arc-extinguishing medium or other electrical equipment (such as SF6 current transformer, etc.)
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
GB/T 11022-2011 Common specifications for high-voltage switchgear and controlgear standards
GB/T 15823-2009 Non-destructive testing - Test methods for helium leak testing
3 Terms and definitions
For the purposes of this document, the terms and definitions given in GB/T 11022-2011 and the following apply. For the convenience of application, some terms and definitions specified in GB/T 11022-2011 are listed below.
3.1
gas-filled compartment
compartment of switchgear or controlgear, the gas pressure inside which is maintained by one of the following systems:
a) controlled pressure system;
b) closed pressure system;
c) sealed pressure system
Note: Several gas-filled compartments may be permanently connected into a common gas system (gas tightness assembly).
[GB/T 11022-2011, Definition 3.6.6.1]
3.2
controlled pressure system for gas
space automatically supplied with air from external compressed air source or internal air source
Note 1: Controlled pressure systems including air circuit breaker (gas blast circuit breaker) or air operating mechanism.
Note 2: A space may consist of several permanently connected gas-filled compartments.
[GB/T 11022-2011, Definition 3.6.6.2]
3.3
closed pressure system for gas
space manually connected to an external air source for replenishment where necessary
Note: It is revised from GB/T 11022-2011, Definition 3.6.6.3.
3.4
sealed pressure system for gas
space with no need for further treatment of gas during the scheduled service life
Note 1: The assembly and test of gas sealing pressure system are all carried out in the factory.
Note 2: The expected service life begins when the device is sealed.
Note 3: It is revised from GB/T 11022-2011, Definition 3.6.6.4.
3.5
rated filling pressure pre (or density ρre)
pressure (or density) for insulation and/or switching filled into the gas-filled compartment before being put into operation or automatic replenishment, which may be expressed by relative pressure or absolute pressure when it is converted under standard atmospheric conditions of +20℃ and 101.3kPa
Note: It is revised from GB/T 11022-2011, Definition 3.6.5.1.
3.6
alarm pressure pae (or density ρae)
pressure (or density) for insulation and/or switching, which may be expressed by relative pressure or absolute pressure when it is converted under standard atmospheric conditions of +20℃ and 101.3kPa, at which a monitoring signal may be given
Note: It is revised from GB/T 11022-2011, Definition 3.6.5.3.
3.7
minimum functional pressure pme (or density ρme)
pressure (or density) for insulation and/or switching, which may be expressed by relative pressure or absolute pressure when it is converted under standard atmospheric conditions of +20℃ and 101.3kPa, when the pressure is greater than or equal to such pressure, the switchgear and controlgear will maintain their rated characteristics
Note: It is revised from GB/T 11022-2011, Definition 3.6.5.5.
3.8
absolute leakage rate
F
total amount of leaked gas per unit time
Note 1: It is expressed in Pa·m3/s.
Note: It is revised from GB/T 11022-2011, Definition 3.6.6.5.
3.9
permissible leakage rate
Fp
maximum permissible absolute leakage rate for parts, components or subassemblies, or the maximum permissible absolute leakage rate for parts, components or subassemblies connected to a pressure system using tightness coordination chart (TC) as specified by the manufacturer
Note: It is expressed in Pa·m3/s.
[GB/T 11022-2011, Definition in 3.6.6.6]
3.10
relative leakage rate
Frel
absolute leakage rate relative to the total amount of gas in the system filled with rated filling pressure (or density)
Note 1: It is expressed in yearly or daily percentage.
Note 2: In general, Fy is used to express the relative yearly leakage rate, and Fd is used to express the relative daily leakage rate.
Note 3: It is revised from GB/T 11022-2011, Definition 3.6.6.7.
3.11
time between replenishments
T
time interval between two replenishments performed manually when the pressure (or density) drops to the alarm value, thus compensating the absolute leakage rate F
Note 1: This value is applicable to closed pressure system.
Note 2: It is revised from GB/T 11022-2011, Definition 3.6.6.8.
3.12
number of replenishments per day
N
number of replenishments to compensate the absolute leakage rate F
Note: This value is applicable to controlled pressure system.
[GB/T 11022-2011, Definition 3.6.6.9]
3.13
pressure drop
Δp
pressure decrease caused by absolute leakage rate F within a given time when there is no replenishment
[GB/T 11022-2011, Definition 3.6.6.10]
3.14
leakage detecting
means of detecting gas leakage point and concentration of leaked gas
Note: It includes sniffing and cumulative leakage measurement.
3.15
sniffing
act of locating the leakage points by slowly moving the probe of leak detector around the gas-filled compartment, or using other imaging instruments
Note 1: Commonly used imaging sniffing methods include infrared imaging sniffing method and laser imaging sniffing method, etc.
Note 2: It is revised from GB/T 11022-2011, Definition 3.6.6.13.
3.16
cumulative leakage measurement
measurement for determining the leakage rate by taking all air leaks of a given final assembly into account
Note: It is revised from GB/T 11022-2011, Definition 3.6.6.12.
3.17
tightness coordination chart
TC
detection data provided by the manufacturer and used in testing parts, components or subassemblies, which explain the relationship between the tightness of the whole system and the tightness of each part, component or subassembly
[GB/T 11022-2011, Definition 3.6.6.11]
3.18
the buckle cover method
method for calculating and determining the relative leakage rate by placing the test specimen in a closed plastic or metal cover and then determining the concentration of tracer gas in the cover after a certain period of time
3.19
the partial bandaging method
method for calculating and determining the relative leakage rate by bandaging part of the test specimen with plastic film and then determining the concentration of tracer gas in the bandaging cavity after a certain period of time
3.20
the pressure drop method
method for calculating the relative leakage rate by determining the pressure drop of switchgear/compartment within a certain time interval
3.21
the bottle hanging method
method for calculating and determining the relative leakage rate by connecting the leakage detecting hole of test specimen and the hanging bottle by a flexible rubber hose and then determining the concentration of tracer gas in the bottle after a certain period of time
3.22
volume of measurement
Vm
volume between the closed cover for leakage collection and the specimen
Note 1: The concentration of tracer gas in such volume is very low, and the cover generally does not need to be tightly sealed.
Note 2: It is used for the buckle cover method and the partial bandaging method.
Note 3: It is revised from GB/T 2423.23-2013, Definition 3.9.
4 Test items
4.1 General
The purpose of tightness test is to prove that the absolute leakage rate F does not exceed the specified value of the permissible leakage rate Fp at an ambient temperature of 20℃, or to determine that the relative yearly leakage rate meets the requirements of relevant standards or product specifications.
Based on the limit of relative yearly leakage rate Fy (see GB/T 11022-2011, 5.15.3), the permissible leakage rate Fp (Pa·m3/s) at an ambient air temperature of 20℃ is calculated as shown in Equation (1):
(1)
Where,
V——the volume of gas tightness system for test specimen, m3;
pre——the rated filling pressure (relative pressure) at an ambient air temperature of 20℃, Pa.
If the leakage rate falls back to a value that does not exceed the permissible leakage rate Fp when the ambient air temperature returns to 20℃, the leakage rate will increase at the permissible ultimate temperature (if such test is required by relevant standards). The temporarily increased leakage rate shall not exceed the value specified in Table 1.
Foreword i 1 Scope 2 Normative references 3 Terms and definitions 4 Test items 4.1 General 4.2 Tightness test at room temperature 4.3 High- and low-temperature tightness tests 5 Test methods 5.1 Qualitative leakage detecting 5.2 Quantitative leakage detecting Annex A (Informative) Tightness (information, example and guidance instruction) Annex B (Informative) Examples for quantitative leakage detecting Annex C (Informative) Principle and spectrum examples of infrared imaging sniffing Bibliography
高压开关设备六氟化硫气体 密封试验方法 1范围 本标准规定了高压开关设备六氟化硫气体密封的术语和定义、试验项目及试验方法。 本标准规定的试验方法用以测定开关设备/隔室的相对年漏气率。 本标准适用于以六氟化硫气体作为绝缘和/或灭弧介质的高压开关设备的气体密封试验。 注:以其他气体作为操作、绝缘和/或灭弧介质的高压开关设备或其他电气设备(例如六氟化硫电流互感器等)的气体密封试验可参照本标准。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 11022—2011高压开关设备和控制设备标准的共用技术要求 GB/T 15823—2009无损检测 氦泄漏检测方法 3术语和定义 GB/T 11022—2011界定的以及下列术语和定义适用于本文件。为了便于使用,以下重复列出了GB/T 11022—2011中的某些术语和定义。 3.1 充气隔室gas-filled compartment 开关设备和控制设备的隔室,隔室内部的气体压力由下列一种系统保持: a)可控压力系统; b)封闭压力系统; c)密封压力系统。 注:几个充气隔室和互间可以永久联接成一公共的气体系统(气密性装配)。 [GB/T 11022—2011,定义3.6.6.1] 3.2 气体的可控压力系统controlled pressure system for gas 自动从外部压缩气源或内部气源补气的空间。 注1:可控压力系统的实例有空气断路器(气吹断路器)或气动操动机构。 注2:空间可以由几个永久连接的充气隔室组成。 [GB/T 11022—2011,定义3.6.6.2] 3.3 气体的封闭压力系统closed pressure system for gas 需要时通过人工连接到外部气源进行补气的空间。 注:改写GB/T 11022—2011,定义3.6.6.3。 3.4 气体的密封压力系统sealed pressure system for gas 在预定的使用寿命期内不需要对气体作进一步处理的空间。 注1:气体的密封压力系统的组成和试验全部在工厂进行。 注2:装置被密封时即为预期使用寿命的开始。 注3:改写GB/T 11022—2011,定义3.6.6.4。 3.5 额定充入压力pre(或密度ρre)rated filling pressure pre(or density ρre) 在投运或自动补压前充入充气隔室的绝缘和/或开合用的压力(或密度),折算到+20℃、101.3 kPa的标准大气条件下,可以用相对压力或绝对压力表示。 注:改写GB/T 11022—2011,定义3.6.5.1。 3.6 报警压力pae(或密度ρae)alarm pressure pae(or density ρae) 用于绝缘和/或开合的压力(或密度),在该压力下可以给出监视信号.折算到+20℃、101.3 kPa的标准大气条件下,可以用相对压力或绝对压力表示。 注:改写GB/T 11022—2011,定义3.6.5.3。 3.7 最低功能压力pme(或密度ρme)minimum functional pressure pme(or density ρme) 用于绝缘和/或开合的压力(或密度),大于或等于此压力时开关设备和控制设备保持其额定特性,折算到+20℃、101.3 kPa的标准大气条件下,可以用相对压力或绝对压力表示。 注:改写GB/T 11022—2011,定义3.6.5.5。 3.8 绝对漏气率absolute leakage rate F 单位时间内泄漏气体的总量。 注1:以Pa·m3/s表示。 注2:改写GB/T 11022—2011,定义3.6.6.5。 3.9 允许漏气率permissible leakage rate Fp 制造厂对部件、元件或分装规定的最大允许绝对漏气率,或是使用密封配合图(TC)对连在一个压力系统上的部件、元件或分装规定的最大允许绝对漏气率。 注:以Pa·m3/s表示。 [GB/T 11022—2011,定义3.6.6.6] 3.10 相对漏气率relative leakage rate Frel 在充有额定充入压力(或密度)的系统中,相对于气体总量的绝对漏气率。 注1:以每年或每天的百分率表示。 注2:通常用Fy表示相对年漏气率,用Fd表示相对天漏气率。 注3:改写GB/T 11022—2011,定义3.6.6.7。 3.11 补气时间间隔time between replenishments T 为补偿绝对漏气率F,当压力(或密度)降至报警值时,人工进行的两次补气间的时间间隔。 注1:该值适用于封闭压力系统。 注2:改写GB/T 11022—2011,定义3.6.6.8。 3.12 每天补气次数number of replenishments per day N 为补偿绝对漏气率F的补气次数。 注:该值适用于可控压力系统。 [GB/T 11022—2011,定义3.6.6.9] 3.13 压力降pressure drop Δp 在不补气的条件下,在给定的时间内由绝对漏气率F引起的压力降低。 [GB/T 11022—2011,定义3.6.6.10] 3.14 检漏leakage detecting 检测漏气点和泄漏气体浓度的手段。 注:包括探漏和累计的泄漏量的测量。 3.15 探漏sniffing 围绕充气隔室缓慢移动检漏仪的探头,或使用其他成像仪器,以定位漏气点的行为。 注1:常用的成像探漏方法有:红外成像探漏法和激光成像探漏法等。 注2:改写GB/T 11022—2011,定义3.6.6.13。 3.16 累计的泄漏量的测量cumulative leakage measurement 计及给定总装的所有漏气以确定泄漏率的测量。 注:改写GB/T 11022—2011,定义3.6.6.12。 3.17 密封配合图tightness coordination chart TC 由制造厂提供的并在对部件、元件或分装进行试验时使用的检测资料,它说明整个系统的密封性和各个部件、元件和/或分装的密封性之间的关系。 [GB/T 11022—2011,定义3.6.6.11] 3.18 扣罩法the buckle cover method 将试品置于封闭的塑料罩或金属罩内,经过一定时间后,测定罩内示踪气体的浓度,并通过计算确定相对漏气率的方法。 3.19 局部包扎法the partial bandaging method 试品的局部用塑料薄膜包扎,经过一定时间后,测定包扎腔内示踪气体的浓度,并通过计算确定相对漏气率的方法。 3.20 压力降法the pressure drop method 通过测定开关设备/隔室在一定时间间隔内的压力降,计算相对漏气率的方法。 3.21 挂瓶法the bottle hanging method 用软胶管连接试品检漏孔和挂瓶,经过一定时间后.测定瓶内示踪气体的浓度,并通过计算确定相对漏气率的方法。 3.22 测量体积 volume of measurement Vm 采集泄漏的密封罩与样品之间的容积。 注1:在该体积中示踪气体的浓度是很低的,罩子一般不需要严密密封。 注2:用于扣罩法和局部包扎法。 注3:改写GB/T 2423.23—2013,定义3.9。 4试验项目 4.1概述 密封试验的目的是证明绝对漏气率F不超过周围温度20℃时允许漏气率Fp的规定值,或用于确定相对年漏气率满足相关标准或产品技术条件的要求。 基于相对年漏气率Fy限值(见GB/T 11022—2011的5.15.3),周围空气温度20℃时允许漏气率Fp(Pa·m3/s)的计算如式(1): (1) 式中: V——试品气体密封系统容积,单位为立方米(m3); pre——在周围空气温度为20℃时的额定充入压力(相对压力),单位为帕斯卡(Pa)。 如果在周围空气温度回到20℃时,漏气率回落至不超过允许漏气率Fp的值,则允许极限温度下(如果相关标准要求进行这样的试验)漏气率有所增加。暂时增加的漏气率不应超过表1中的规定值。 表1 气体系统的允许漏气率 温度 ℃ 允许漏气率 运行温度上限值(≥40℃) 3Fp 标准周围温度(20℃) Fp 运行温度下限值(直到并包含-40℃的所有值) 3Fp 运行温度下限值(小于-40℃的所有值) 6Fp