![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. In accordance with the requirements of MOHURD Notice on printing and distributing the development and revision plan of engineering construction standards and specifications in 2015 (JIAN BIAO [2014] No. 189), this standard is developed by the drafting team through extensive investigation, careful summarization of practical engineering experience, reference to relevant international standards and foreign advanced standards and on the basis of widely solicited opinions. The main technical contents of this standard: 1. General provisions; 2. Terms and symbols; 3. Basic requirements; 4. Cast-in-situ prestressed concrete frame and portal structure; 5. Prestressed concrete slab-column structure; 6. Prestressed concrete frame structure assembled by prestressed tendons. The following main technical contents of this standard have been revised: 1. the seismic influence coefficient curve has been adjusted; 2. the value taking method of equivalent damping ratio of the structure has been supplemented; 3. the design requirements of slab-column structure and slab-column-brace structure have been added; 4. the design requirements of precast concrete frame structure assembled by prestressing tendons have been added; 5. the relevant provisions of prestress strength ratio have been adjusted; 6. the relevant provisions of unbonded prestressing fiber reinforced composite tendon have been added. Standard for seismic design of prestressed concrete structures 1 General provisions 1.0.1 This standard is prepared with a view to implementing the national laws and regulations on building construction and earthquake prevention and disaster mitigation, executing the prevention first policy and reducing the earthquake damage and economic loss, and avoiding casualties after taking seismic fortification measures for prestressed concrete structure. 1.0.2 This standard is applicable to the seismic design of prestressed concrete structure in areas with seismic precautionary intensity of 6, 7 and 8 degrees. 1.0.3 In addition to this standard, the seismic design of prestressed concrete structure shall also comply with the current relevant standards of the nation. 2 Terms and symbols 2.1 Terms 2.1.1 prestressed concrete structure concrete structure, configured with prestressing tendons, whose prestress is generated by tensioning or other methods 2.1.2 post-tensioned bonded prestressed concrete structure prestressed concrete structure, such as prestressed concrete frame, portal frame and the like, that is unbonded by grouting in the pipes and whose prestress is generated by tensioning prestressing tendons and anchoring, after the concrete has the specified strength 2.1.3 post-tensioned unbonded prestressed concrete structure prestressed concrete structure which is configured with unbonded prestressed tendons with anti-corrosion lubricating coating and external sheath and is not bonded with concrete 2.1.4 damping ratio ratio of actual damping to critical damping 2.1.5 ratio of axial compressive force to axial compressive ultimate capacity of section ratio of axial compressive force of vertical concrete member to its specified axial bearing capacity, which is the axial compressive force of prestress action to participate in the combination for prestressed concrete columns 2.1.6 slab-column structure structural system composed of horizontal members as slabs and vertical members as columns, in which the floor slab can be flat, hollow or multi-ribbed slab, and the slab-column joints can be provided with column caps or supporting plates 2.1.7 slab-column-brace structure structural system composed of slab-column frames and brace composed of beamless slabs and columns, with the brace of ordinary steel or buckling restrained brace 2.1.8 slab-column-wall structure structural system in which slab-column frame composed of beamless slabs and columns, together with seismic wall, bears vertical and horizontal actions 2.1.9 slab-column-frame structure structural system in which slab-column frame composed of beamless slabs and columns, together with beamed frame, bears vertical and horizontal actions 2.1.10 monolithic precast concrete frame structure assembled by prestressed tendons monolithic precast concrete frame structure assembled by concrete beam-column member through prestressing tendons 2.1.11 precast concrete frame structure assembled by unbonded prestressed tendons with dry connections integral frame structure assembled by precast concrete beam-column members through unbonded prestressing tendons and energy-dissipating reinforcements, in which the prestressing tendons provide the deformation recovery capability of the structure, and the energy-dissipating reinforcements absorb and dissipate earthquake energy 2.1.12 energy-dissipating reinforcement reinforcement which absorbs and dissipates seismic energy by yielding, provides bending bearing capacity and meets the requirements of seismic performance in the precast concrete frame structure assembled by unbonded prestressed tendons with dry connections 2.2 Symbols 2.2.1 Material performance Ep——the elastic modulus of prestressing tendon; Es——the elastic modulus of reinforcement; fc——the design value of axial compressive strength of concrete; fptk——the standard ultimate strength of prestressing tendon; fpy——the design tensile strength of prestressing tendon; fstk——the standard ultimate strength of reinforcement; fy——the design tensile strength of reinforcement; ——the design compressive strength of reinforcement; fyk——the standard yield strength of reinforcement; fyv——the design tensile strength of stirrup; σp——the stress of prestressing tendon; σpe——the effective stress of prestressing tendon; σ0——the stress of energy-dissipating reinforcement; εpu——the strain of prestressing tendon when its stress reaches 0.95 fptk. 2.2.2 Actions and effects Fc——the pressure generated by concrete interface of joint surface; N——the design value of axial pressure; NG——the design axial pressure of column under the action of representative gravity load of the slab of this floor; Npe——the total effective pre-applied force of prestressing tendon; M——the flexural capacity at the joint surface; Mp——the flexural capacity of unbonded prestressing tendons at the joint surface; Mpu——the ultimate flexural capacity of unbonded prestressing tendons; Ms——the flexural capacity of energy-dissipating reinforcements at the joint surface; Msu——the ultamate flexural capacity of energy-dissipating reinforcements; Mu——the ultimate flexural capacity of the section; R——the design value of the load-carrying capacity of structure member; S——the design value of the action combination effect; VGk——the shear force generated by the standard value of permanent load at the joint surface; Vj——the design combined shear in joint core area of beam-column; VQK——the shear force generated by the standard value of variable load at the joint surface; VuE——the shear bearing capacity of seam under seismic design situation; ——the sum of the design values of the combined bending moment of the left and right equivalent beam end sections of the joint in the clockwise or counterclockwise direction. ——the sum of the bending moment values of the anti-seismic flexural bearing capacity of the normal section of the joint actually allocated in the counterclockwise or clockwise direction. ——the sum of the design values of the combined bending moment of the upper and lower beam end sections of the joint in the clockwise or counterclockwise direction. 2.2.3 Geometric parameters Ap——the sectional area of prestressing tendon; As——the sectional area of ordinary reinforcement; Asv——all sectional areas of transverse reinforcement arranged within the same stirrup spacing; Asvj——the total sectional area of stirrups in the same sectional checking direction within the effective checked width of the core area; ——the distance from the resultant force point of the beam compressive reinforcement to the compression edge; bd——the effective width of flat supporting plate or column cap; bj——the effective checked width of section in the joint core area; by——the calculated width of equivalent frame beam; db——the diameter of energy-dissipating reinforcement; Hc——the calculated height of column; hb——the sectional height of beam; hj——the sectional height of the joint core area; hs——the distance from the resultant force point of the longitudinal tensile ordinary reinforcement to the sectional compression edge; Lu——the unbonded length of energy-dissipating reinforcement near the joint surface; Lups——the unbonded length of prestressing tendon; lax, loy——the calculated span of equivalent beam; s——the spacing between stirrups; x——the height of the concrete compression zone of the equivalent rectangular stress diagram; Δs——the elongation value of energy-dissipating reinforcement under limit state. 2.2.4 Calculation coefficients and others T——the natural vibration period of the structure; Tg——the characteristic period of ground motion; α——the seismic influence coefficient; αb——the strain permeability coefficient of energy-dissipating reinforcement; αmax——the maximum seismic influence coefficient; β1——the height adjustment coefficient of neutral axis; βc——the influence coefficient of concrete strength; γ0——the structural importance coefficient; γRE——the seismic adjustment coefficient of bearing capacity; λNp——the ratio of axial compressive force to axial compressive ultimate capacity of section of prestressed concrete columns; ηc——the amplification coefficient for bending moment at the column end; ηj——the constraint influence coefficient of orthogonal beam; μ——the friction coefficient; ψ——the reduction coefficient. 3 Basic requirements 3.1 General requirements 3.1.1 For prestressed concrete structures designed according to this standard for seismic resistance, the maximum height of the building should not exceed the limits specified in Table 3.1.1-1 and Table 3.1.1-2. For structures with irregular horizontal and vertical planes or those with large span, the applicable maximum height should be reduced appropriately; for Class B buildings, the applicable maximum height may be determined according to the local seismic precautionary intensity; the buildings with height beyond those specified in this table shall be specially researched and demonstrated, for which, effective reinforcement measures shall be taken; Table 3.1.1-1 Applicable maximum height of cast-in-situ prestressed concrete building m Structural system Seismic intensity 6 7 8 (0.2g) 8 (0.3g) Frame structure 60 50 10 35 Frame-wall structure 130 120 100 80 Partial frame-supported wall structure 120 100 80 50 Frame-corewall structure 150 130 100 90 Slab-column-wall structure 80 70 55 40 Slab-column-frame structure 22 18 15 Slab-column structure 18 15 12 Slab-column-brace structure 60 50 40 Notes: 1 The building height refers to the distance from outdoor ground to main roof slab top, excluding the part partially protruding from the roof; 2 Special-shaped column frames are excluded from the frame mentioned in the table. Table 3.1.1-2 Applicable maximum height of building of precast concrete assembled by prestressing tendons m Structural system Seismic intensity 6 7 8 (0.2g) 8 (0.3g) Monolithic precast concrete frame structure assembled by prestressing tendons 60 50 40 30 Precast concrete frame structure assembled by unbonded prestressing tendons with dry connections 22 18 15 — 3.1.2 For prestressed concrete structure, different seismic grades shall be adopted according to the seismic precautionary categories and intensities, structure types and building heights, and the requirements of corresponding calculation and construction measures shall be met. 1 The seismic grade of Class C buildings shall be determined in accordance with those specified in Tables 3.1.2-1 and 3.1.2-2. 2 For Classes A, B and D buildings, the seismic precautionary criterion shall be determined according to GB 50223 Standard for classification of seismic protection of building constructions, and the seismic grade shall be determined according to this table; 3 Where the building height is approximate or equal to the threshold, the seismic grade shall be determined in combination with the irregularity, site and foundation conditions of the building; 4 When the frame-corewall structure with a height less than 60m is designed according to the requirements of frame-wall structure, its seismic grade shall be determined according to the requirements of frame-wall structure in Table 3.1.2-1 of this standard; 5 The seismic grade of non-prestressed member such as seismic wall shall be implemented according to the relevant requirements of the current national standard GB 50011 Code for seismic design of buildings. Table 3.1.2-1 Seismic grade of cast-in-situ prestressed concrete structure member Structural system Precautionary intensity 6 7 8 9 Frame structure Height (m) ≤24 >24 ≤24 >24 ≤24 >24 ≤24 Frame IV III III II II I I Large-span frame III II I I Frame-wall structure Height (m) ≤60 >60 ≤24 25~60 >60 ≤24 25~60 >60 ≤24 25~50 Frame IV III IV III II III II I II I Partial frame-supported wall structure Height (m) ≤80 >80 ≤80 I I Frame-supported storey frame II II I I I Frame-corewall structure Frame III II I I Slab-column-wall structure Height (m) ≤35 >35 II I I Column, joint and frame of slab-column III II Slab-column-frame structure Height (m) ≤12 >12 ≤12 >12 ≤12 >12 I Column, joint and frame of slab-column structure III II II I I I Slab-column structure Height (m) ≤12 >12 ≤12 >12 ≤12 I I Column, joint and frame of slab-column structure III II II I I Slab-column-brace structure Height (m) ≤24 >24 ≤24 >24 ≤24 >24 Column, joint and frame of slab-column structure III II II II I I Ordinary steel brace III II II II I I Note: The large-span frame refers to the frame with a span of not less than 18m. Table 3.1.2-2 Seismic grade of member of precast concrete structure assembled by prestressing tendons Structural system Precautionary intensity 6 7 8 Monolithic precast concrete frame structure assembled Height (m) ≤24 >24 ≤24 >24 ≤24 >24 Frame IV III III II II I Large-span frame III II I Precast concrete frame structure assembled by unbonded prestressing tendons with dry connections Height (m) ≤12 >12 ≤12 >12 ≤12 >12 Column III II II I I I Frame beam III III III III III III 3.1.3 If the construction site is Category I, Categories A and B buildings shall be allowed to adopt details of seismic design according to the requirements of seismic precautionary intensity in this area; Category C buildings shall be allowed to adopt details of seismic design according to the requirements of seismic precautionary intensity in this area lowering by one degree, while according to the requirements of seismic precautionary intensity in this area in the case of seismic precautionary intensity of 6. For areas with the design basic acceleration of ground motion of 0.15g or 0.30g, if the construction site is Category III or IV, unless otherwise specified in this Specification, the details of seismic design should be taken according to the requirements of different categories of buildings with seismic precautionary intensity of 8 (0.20g) or 9 (0.40g) respectively. 3.1.4 Unbonded prestressing tendons shall not be used for frames with seismic grade I, tension members of load-bearing structures and transfer storey girders; such tendons should be used for plate members with dispersed prestressing tendons; such tendons may be used for the secondary beam of the floor. Bonded prestressing tendons should be used for post-tensioned prestressed cast-in-situ frame and portal frame, and the following requirements shall be met if unbonded prestressing tendons are used: 1 Reliable anti-looseness measures shall be taken for anchorage; 2 The requirements in 3.1.5 of this standard shall be met if unbonded prestressing tendons are used. 3.1.5 Under the combination of earthquake action effect and gravity load effect, unbonded prestressing tendons may be used in frame beams of seismic grade II, III and IV when one of the following three conditions is met; unbonded prestressing tendons may be used in cantilever beam when the first or second paragraph is met. 1 The design bending moment of the end section of the frame beam and the root section of the cantilever beam borne by the non-prestressing tendons shall not be less than 50% of the design value of combined bending moment ; 2 Prestressing tendons are only used to meet the deflection and crack requirements of members; 3 In the case of seismic wall or tube, under specified horizontal earthquake action, the seismic overturning moment undertaken by the bottom frame shall be less than 50% of total seismic overturning moment. 3.1.6 When prestressing tendons are configured in frame columns, bonded prestressing tendons shall be used for frame columns of seismic grade I, and should be used for frame columns of Seismic Grades II and III. Foreword ii 1 General provisions 2 Terms and symbols 2.1 Terms 2.2 Symbols 3 Basic requirements 3.1 General requirements 3.2 Earthquake action and seismic checking for structures 3.3 Materials and anchorages 4 Cast-in-situ prestressed concrete frame structure and portal structure 4.1 General requirements 4.2 Prestressed concrete frame beams 4.3 Prestressed concrete frame columns and joints of frame 4.4 Prestressed concrete portal structure 5 Prestressed concrete slab-column structure 5.1 General requirements 5.2 Essentials in calculation 6 Precast concrete frame structure assembled by prestressing tendons 6.1 General requirements 6.2 Monolithic precast concrete frame structure assembled by prestressed tendons 6.3 Precast concrete frame structure assembled by unbonded prestressed tendons with dry connections Explanation of wording in this standard List of quoted standards 前言 根据住房和城乡建设部《关于印发<2015年工程建设标准规范制订、修订计划>的通知》(建标[2014] 189号)的要求,标准编制组经广泛调查研究,认真总结工程实践经验,参考有关国际标准和国外先进标准,并在广泛征求意见的基础上,修订了本标准。 本标准的主要技术内容是:1.总则;2.术语和符号;3.基本规定;4.现浇预应力混凝土框架和门架;5.预应力混凝土板柱结构;6.预应力装配式混凝土框架结构。 本标准修订的主要技术内容是:1.调整了建筑结构地震影响系数曲线;2.补充了结构等效阻尼比的取值方法;3.增加了板柱结构、板柱-支撑结构的设计规定;4.增加了预应力装配式混凝土框架结构的设计规定;5.调整了预应力强度比的有关规定;6.增加了无粘结预应力纤维增强复合材料筋的有关规定。 1 总则 1.0.1 为贯彻执行国家有关建筑工程、防震减灾的法律法规,实行以预防为主的方针,使预应力混凝土结构经抗震设防后减轻地震破坏,避免人员伤亡,减少经济损失,制定本标准。 1.0.2 本标准适用于抗震设防烈度为6度至8度地区的预应力混凝土结构的抗震设计。 1.0.3 预应力混凝土结构的抗震设计,除应符合本标准外,尚应符合国家现行有关标准的规定。 2 术语和符号 2.1 术语 2.1.1 预应力混凝土结构 prestressed concrete structure 配置受力的预应力筋,通过张拉或其他方法建立预加应力的混凝土结构。 2.1.2 有粘结预应力混凝土结构 post-tensioned bonded prestressed concrete structure 在混凝土达到规定的强度后,通过张拉预应力筋并锚固而建立预加应力,且在管道内灌浆实现粘结的混凝土结构,如预应力混凝土框架、门架等。 2.1.3 无粘结预应力混凝土结构 post-tensioned unbonded prestressed concrete structure 配置带有防腐润滑涂层和外包护套的无粘结预应力筋而与混凝土相互不粘结的预应力混凝土结构。 2.1.4 阻尼比 damping ratio 实际阻尼与临界阻尼的比值。 2.1.5 轴压比 ratio of axial compressive force to axial compressive ultimate capacity of section 混凝土竖向构件轴向压力与其规定的轴向承载力的比值。对预应力混凝土柱,取预应力作用参与组合的轴向压力值。 2.1.6 板柱结构 slab-column structure 由水平构件为板和竖向构件为柱所组成的结构体系,楼板可采用平板、空心板或密肋板,板柱节点可设置柱帽或托板。 2.1.7 板柱-支撑结构 slab-column-brace structure 由无梁楼板和柱组成的板柱框架与支撑组成的结构体系,支撑可采用普通钢支撑或屈曲约束支撑。 2.1.8 板柱抗震墙结构 slab-column-wall structure 由无梁楼板和柱组成的板柱框架与抗震墙共同承受竖向和水平作用的结构体系。 2.1.9 板柱框架结构 slab-column-frame structure 由无梁楼板和柱组成的板柱框架与有梁框架共同承受竖向和水平作用的结构体系。 2.1.10 预应力装配整体式混凝土框架结构 monolithic precast concrete frame structure assembled by prestressed tendons 预制混凝土梁柱构件通过预应力筋连接形成的装配整体式框架结构。 2.1.11 无粘结预应力全装配混凝土框架结构 precast concrete frame structure assembled by unbonded prestressed tendons with dry connctions 预制混凝土梁柱构件通过无粘结预应力筋和耗能钢筋连接成整体的框架结构,其中预应力筋提供结构的变形恢复能力,耗能钢筋吸收和耗散地震能量。 2.1.12 耗能钢筋 energy-dissipating reinforcement 在无粘结预应力全装配混凝土框架结构中,通过屈服吸收和耗散地震能量并提供受弯承载力,同时满足抗震性能要求的钢筋。 2.2 符号 2.2.1 材料性能 Ep——预应力筋的弹性模量; Es——钢筋的弹性模量; fc——混凝土轴心抗压强度设计值; fptk——预应力筋极限强度标准值; fpy——预应力筋抗拉强度设计值; fstk——钢筋极限强度标准值; fy——钢筋抗拉强度设计值; ——钢筋抗压强度设计值; fyk——钢筋屈服强度标准值; fyv——箍筋抗拉强度设计值; σp——预应力筋的应力; σpe——预应力筋的有效预应力; σs——耗能钢筋的应力; εpu——预应力筋应力达到0.95fptk时的应变。 2.2.2 作用和作用效应 Fc——结合面混凝土界面产生的压力; N——轴向压力设计值; NG——在本层楼板重力荷载代表值作用下的柱轴向压力设计值; Npe——预应力筋的总有效预加力; M——结合面处受弯承载力; Mp——无粘结预应力筋在结合面处贡献的受弯承载力; Mpu——无粘结预应力筋的极限受弯承载力; Ms——耗能钢筋在结合面处贡献的受弯承载力; Msu——耗能钢筋的极限受弯承载力; Mu——截面的极限受弯承载力; R——结构构件承载力设计值; S——作用组合的效应设计值; VGk——永久荷载标准值在结合面产生的剪力; Vj——梁柱节点核心区组合的剪力设计值; VQk——可变荷载标准值在结合面产生的剪力; VuE——地震设计状况下接缝受剪承载力; ——节点左、右等代梁端截面顺时针或反时针方向组合的弯矩设计值之和; ——节点左、右梁端截面反时针或顺时针方向实配的正截面抗震受弯承载力所对应的弯矩值之和; ——节点上下柱端截面顺时针或反时针方向组合的弯矩设计值之和。 2.2.3 几何参数 Ap——预应力筋截面面积; As——普通钢筋截面面积; Asv——配置在同一箍筋间距内的横向钢筋全部截面面积; Asvj——核心区有效验算宽度范围内同一截面验算方向箍筋的总截面面积; ——梁受压钢筋合力点至受压边缘的距离; bd——平托板或柱帽的有效宽度; bj——节点核心区的截面有效验算宽度; by——y向等代框架梁的计算宽度; db——耗能钢筋直径; Hc——柱的计算高度; hb——梁的截面高度; hj——节点核心区的截面高度; hs——纵向受拉普通钢筋合力点至截面受压边缘的距离; Lu——邻近结合面处,耗能钢筋无粘结长度; Lups——预应力筋的无粘结长度; lax、loy——等代梁的计算跨度; s——箍筋间距; x——等效矩形应力图形的混凝土受压区高度; Δs——极限状态下耗能钢筋伸长值。 2.2.4 计算系数及其他 T——结构自振周期; Tg——特征周期; α——地震影响系数; αb——耗能钢筋应变渗透系数; αmax——地震影响系数最大值; β1——中和轴高度调整系数; βc——混凝土强度影响系数; γ0——结构重要性系数; γRE——承载力抗震调整系数; λNp——预应力混凝土柱的轴压比; ηc——柱端弯矩增大系数; ηj——正交梁的约束影响系数; μ——摩擦系数; ψ——折减系数。 3 基本规定 3.1 一般规定 3.1.1 按本标准进行抗震设计的预应力混凝土结构,其房屋最大高度不应超过表3.1.1-1及表3.1.1-2所规定的限值。对平面和竖向均不规则的结构或跨度较大的结构,适用的最大高度宜适当降低;乙类建筑可按本地区抗震设防烈度确定适用的最大高 度;超过表内高度的房屋,应进行专门研究和论证,并应采取有效的加强措施。 表3.1.1-1 现浇预应力混凝土房屋适用的最大高度(m) 结构体系 烈度 6 7 8(0.2g) 8(0.3g) 框架结构 60 50 40 35 框架-抗震墙结构 130 120 100 80 部分框支抗震墙结构 120 100 80 框架-核心筒结构 150 130 100 90 板柱-抗震墙结构 80 70 55 40 板柱-框架结构 22 18 15 — 板柱结构 18 15 12 — 板柱-支撑结构 60 50 40 — 注:1房屋高度指室外地面到主要屋面板板顶的高度,不包括局部突出屋顶部分; 2 表中框架,不包括异形柱框架。 表3.1.1-2 装配式预应力混凝土房屋适用的最大高度(m) 结构体系 烈度 6 7 8(0.2g) 8(0.3g) 预应力装配整体式框架结构 60 50 40 30 无粘结预应力全装配框架结构 22 18 15 — 3.1.2 预应力混凝土结构应根据设防类别、烈度、结构类型和房屋高度按下列规定采用不同的抗震等级,并应符合相应的计算和构造措施要求: 1 丙类建筑的抗震等级应按表3.1.2-1和表3.1.2-2确定; 2 甲、乙、丁类的建筑,应按现行国家标准《建筑工程抗震设防分类标准》GB 50223的规定确定抗震设防标准,并应按本标准表3.1.2-1和表3.1.2-2确定抗震等级; 3 接近或等于高度分界时,应结合房屋不规则程度及场地、地基条件确定抗震等级; 4 高度不超过60 m的框架-核心筒结构按框架-抗震墙的要求设计时,应按本标准表3.1.2-1中框架抗震墙结构的规定确定其抗震等级; 5 抗震墙等非预应力构件的抗震等级应按现行国家标准《建筑抗震设计规范》GB 50011中钢筋混凝土结构的规定执行。 表3.1.2-1 现浇预应力混凝土结构构件的抗震等级 结构体系 设防烈度 6 7 8 9 框架结构 高度(m) ≤24 >24 ≤24 >24 ≤24 >24 ≤24 框架 四 三 三 二 二 一 一 大跨度框架 三 二 一 一 框架-抗震墙结构 高度(m) ≤60 >60 ≤24 25〜60 >60 ≤24 25〜60 >60 ≤24 25~50 框架 四 三 四 三 二 三 二 一 二 一 部分框支抗震墙结构 高度(m) ≤80 >80 ≤80 — — 框支层框架 二 二 一 一 — — 框架-核心筒结构 框架 三 二 一 一 板柱-抗震墙结构 高度(m) ≤35 >35 二 一 — 板柱的柱、节点及框架 三 二 板柱-框架结构 高度(m) ≤12 >12 ≤12 >12 ≤12 >12 — 板柱的柱、节点及框架 三 二 二 一 — 一 板柱结构 高度(m) ≤12 >12 ≤12 >12 ≤12 — — 板柱的柱、节点及框架 三 二 二 一 一 板柱-支撑结构 高度(m) ≤24 >24 ≤24 >24 ≤24 >21 — 板柱的柱、节点及框架 三 二 二 二 一 一 普通钢支撑 三 二 二 二 一 一 注:大跨度框架指跨度不小于18m的框架。 表3.1.2-2 预应力装配式混凝土结构构件的抗震等级 结构体系 设防烈度 6 7 8 装配整体式框架结构 高度(m) ≤24 >24 ≤24 >24 ≤24 >24 框架 四 三 二 二 二 一 大跨度框架 三 二 一 无粘结预应力全装配框架结构 高度(m) ≤12 >12 ≤12 >12 ≤12 >12 柱 二 二 二 一 一 一 框架梁 三 三 二 二 三 二 3.1.3 建筑场地为Ⅰ类时,对甲、乙类的建筑应允许按本地区抗震设防烈度的要求采取抗震构造措施;对丙类的建筑应允许按本地区抗震设防烈度降低一度的要求采取抗震构造措施,但抗震设防烈度为6度时应按本地区抗震设防烈度的要求采取抗震构造措施。在设计基本地震加速度为0.15g和0.30g的地区,当建筑场地为Ⅲ类、Ⅳ类时,宜分别按8度(0.20g)和9度(0.40g)时各类建筑的要求采取抗震构造措施。 3.1.4 抗震等级为一级的框架、承重结构的受拉杆件及转换层大梁不应采用无粘结预应力筋;分散配置预应力筋的板类构件宜采用无粘结预应力筋;楼盖的次梁可采用无粘结预应力筋。后张预应力现浇框架、门架宜采用有粘结预应力筋,采用无粘结预应力筋时,应符合下列规定: 1 锚具应采取可靠防松措施; 2 采用无粘结预应力钢筋时,应符合本标准第3.1.5条的规定。 3.1.5 在地震作用效应和重力荷载效应组合下,当符合下列三款之一时,无粘结预应力钢筋可在抗震等级为二级、三级、四级框架梁中应用;当符合第1款或第2款时,无粘结预应力钢筋可在悬臂梁中应用。 1 框架梁端部截面及悬臂梁根部截面由非预应力钢筋承担的弯矩设计值,不应小于组合弯矩设计值的50%; 2 预应力筋仅用于满足构件的挠度和裂缝要求; 3 设有抗震墙或筒体,且在规定的水平地震作用下,底层框架承担的地震倾覆力矩应小于总地震倾覆力矩的50%。 3.1.6 框架柱中配置预应力筋时,对抗震等级为一级的框架柱,应采用有粘结预应力筋;对抗震等级为二级、三级的框架柱,宜采用有粘结预应力筋。 3.1.7 预应力混凝土结构应进行多遇地震作用下的抗震变形验算,楼层内弹性层间位移角限值宜符合表3.1.7的规定。 表3.1.7 弹性层间位移角限值 结构类型 弹性层间位移角限值 框架结构 板柱结构 板柱-框架结构 预应力装配整体式混凝土框架结构 无粘结预应力全装配混凝土框架结构 1/550 框架-抗震墙结构 框架-核心筒结构 板柱-抗震墙结构 1/800 预应力混凝土框支层 1/1000 板柱-支撑结构 普通钢支撑 1/700 屈曲约束支撑 1/550 3.1.8 预应力混凝土结构应按现行国家标准《建筑抗震设计规范》GB 50011和本标准的规定进行罕遇地震作用下结构薄弱层或薄弱部位的弹塑性变形验算,结构薄弱层或薄弱部位弹塑性层间位移角限值宜符合表3.1.8的规定。 表3.1.8 弹塑性层间位移角限值 结构类型 弹塑性层间位移角限值 框架结构 板柱结构 板柱-框架结构 预应力装配整体式混凝土框架结构 无粘结预应力全装配混凝土框架结构 1/50 框架-抗震墙结构 框架-核心筒结构 板柱-抗震墙结构 1/100 板柱-支撑结构 普通钢支撑 1/100 屈曲约束支撑 1/50 3.1.9 在框架-抗震墙结构、抗震墙结构及框架-核心筒结构中采用的预应力混凝土平板应符合下列规定: 1 柱支承预应力混凝土平板的厚度不宜小于跨度的1/45,周边支承预应力混凝土板厚度不宜小于跨度的1/50,其厚度分别不应小于200mm及150mm; 2 在核心筒四个角部,应设置扁梁或暗梁与外柱相连接,其余外框架柱处宜设置暗梁与内筒相连接; 3 在预应力混凝土平板凹凸不规则处及开洞处,应设置钢筋混凝土暗梁或边梁; 4 柱支承预应力混凝土平板的板端截面按下式计算的预应力强度比λ不宜大于0.80。 (3.1.9) 式中:fpy——预应力筋抗拉强度设计值(N/mm2);对无粘结预应力混凝土平板,应取无粘结预应力筋的应力设计值,无粘结预应力筋的应力设计值应按现行行业标准《无粘结预应力混凝土结构技术规程》JGJ 92的规定计算; Ap——预应力筋截面面积(mm2); hp——纵向受拉预应力筋合力点至截面受压边缘的距离(mm); fy——普通钢筋抗拉强度设计值(N/mm2); As——普通钢筋截面面积(mm2); hs——纵向受拉普通钢筋合力点至截面受压边缘的距离(mm)。 3.1.10 对多跨无粘结预应力混凝土结构,宜将无粘结预应力筋分段锚固,或增设中间锚固点,非预应力钢筋最小截面面积尚应符合现行行业标准《无粘结预应力混凝土结构技术规程》JGJ 92的有关规定。 3.1.11 后张预应力筋的锚具不宜设置在梁柱节点核心区,且不宜设置在梁端箍筋加密区。当锚具设置在节点核心区时,应考虑锚具对受剪截面产生削弱的不利影响。 3.1.12 采用无粘结预应力纤维增强复合材料筋时,其材料性能、预应力损失、承载能力极限状态计算和正常使用极限状态验算等应符合国家现行标准《无粘结预应力混凝土结构技术规程》JGJ 92和《纤维增强复合材料建设工程应用技术规范》GB 50608的相关规定。 3.1.13 采用缓粘结预应力筋时,其材料性能、预应力损失、承载能力极限状态计算和正常使用极限状态验算等应符合现行行业标准《缓粘结预应力混凝土结构技术规程》JGJ 387的相关规定。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 | ||
版权所有: 中译悦尔(北京)翻译有限公司 2008-2040 | ||
全国免费电话:800-810-5431 电话:010-8572 5110 传真:010-8581 9515 | ||
Email: bz@bzfyw.com | |
||
本页关键词: | ||
JGJ/T 140-2019, JGJ 140-2019, JGJT 140-2019, JGJ/T140-2019, JGJ/T 140, JGJ/T140, JGJ140-2019, JGJ 140, JGJ140, JGJT140-2019, JGJT 140, JGJT140 |