![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This document is developed in accordance with the rules given in GB/T 1.1-2020 Directives for standardization — Part 1: Rules for the structure and drafting of standardizing documents. This document has been redrafted and modified in relation to ISO 15037-1:2019 Road vehicles—Vehicle dynamics test methods—Part 1: General conditions for passenger cars. This document is changed largely from ISO 15037-1:2019 in structure; the correspondence between this document and ISO 15037-1:2019 in clause number is listed in Annex A. The main technical differences with respect to ISO 15037-1:2019 and their reasons are as follows: ——The application scope was changed from "passenger cars and light trucks" to "vehicles of category M1, M2 and N1 having a design total mass not exceeding 3.5t" (see Clause 1), which is consistent with the current standard. ——ISO 8855:2011 was replaced by GB/T 12549-2013 (see 4.1), the former not equivalent to the latter. GB/T 12549-2013 has been revised and adjusted based on ISO 8855:2011 according to the standards in China. ——In Table 1, the typical operating ranges of steering wheel angle was changed from "-360°to 360°" to "-1,080°to 1,080°" (see 5.1.1), which is consistent with the commonly used steering wheel angle transducers. ——With regard to the analog signal debugging, "In order to preserve low-frequency signals, the signals shall be DC coupled." (see 5.3.2.2) was added. In order to ensure the integrity of low-frequency information in analog signals, analog signal processing is uniformly standardized. ——In Annex C, "the way to measure the longitudinal velocity is by Global Positioning System (GPS)" in C.3 was changed to "GNSS"; in C.11, "the vehicle trajectory can be measured by a Global Positioning System (GPS)" was changed to "GNSS" (see C.3 and C.11). The longitudinal velocity and trajectory measurement system is not only GPS, but also GNSS such as BeiDou Navigation Satellite System (BDS). The following editorial changes have been made in this document: ——In order to coordinate with the existing standards, the name of the standard was changed to "General condition of vehicle dynamics test for passenger cars". Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The issuing body of this document shall not be held responsible for identifying any or all such patent rights. This standard was proposed by the Ministry of Industry and Information Technology of the People's Republic of China. This document is under the jurisdiction of the National Technical Committee of Auto Standardization (SAC/TC 114). General condition of vehicle dynamics test for passenger cars 1 Scope This standard specifies the general condition of vehicle dynamics test for passenger cars. This standard is applicable to vehicles of category M1, M2 and N1 having a design total mass not exceeding 3.5t. 2 Normative references The following documents contain provisions which, through reference in this text, constitute provisions of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. GB/T 12549-2013 Terms and definitions for vehicle controllability and stability (ISO 8855:2011, NEQ) 3 Terms and definitions None 4 Variables 4.1 Reference system The variables of motion recorded in the test shall meet the coordinate system definition in GB/T 12549-2013. The location of the origin of the coordinate is usually the centroid of the vehicle, and other positions are allowed, which shall be recorded in the test report, see Annex B. 4.2 Variables to be measured To describe of driver input and vehicle response related to vehicle dynamics, the main variables are as follows: ——steering wheel angle, δH; ——steering wheel torque, MH; ——longitudinal velocity, vX; ——sideslip angle of complete vehicle, β; or lateral velocity, vY; ——longitudinal acceleration, aX; ——lateral acceleration, aY; ——yaw velocity, dΨ/dt; ——roll velocity, dφ/dt; ——pitch velocity, dθ/dt; ——roll angle, φ; ——pitch angle, θ. All tests that make reference to this standard shall specify which variables apply. The tests are carried out according to specific standards, and other variables can be added or recommended accordingly. These variables can be measured directly or calculated from the measured values. 5 Measurement 5.1 Requirements for measuring equipment 5.1.1 Measurement range and error requirements of equipment Multi-channel acquisition systems and transducers are used in the tests. The operating ranges and the recommended maximum errors of the transducer and recording system are given in Table 1. Both measured and calculated variables should be up to the specified accuracy, which shall be improved in order to calculate some characteristic values. Table 1 Variables, typical operating ranges and recommended maximum errors Variable Typical operating range Recommended maximum error Steering wheel angle -1,080°~1,080° ±1°, for |δH|≤50° ±2°, for 50°<|δH|≤180° ±4°, for |δH|>180° Steering wheel torque -30 N·m to 30 N·m ±0.1 N·m, |MH|≤10 N·m ±0.3 N·m, |MH|>10 N·m Longitudinal velocity 0 km/h to 180 km/h ±1 km/h, vX≤100 km/h ±2 km/h, vX>100 km/h Lateral velocity -36 km/h to 36 km/h ±0.72 km/h Sideslip angle -20° to 20° ±0.3° Longitudinal acceleration -15 m/s2 to 15 m/s2 ±0.15 m/s2 Lateral acceleration -15 m/s2 to 15 m/s2 ±0.15 m/s2 Yaw velocity -50°/s to 50°/s ±0.3°/s for dΨ/dt≤20°/s ±1°/s for dΨ/dt>20°/s Pitch velocity -50°/s to 50°/s ±0.3°/s for dθ/dt≤20°/s ±1°/s for dθ/dt>20°/s Roll velocity -50°/s to 50°/s ±0.3°/s for dφ/dt≤20°/s ±1°/s for dφ/dt>20°/s Roll angle -15° to 15° ±0.15° Pitch angle -15° to 15° ±0.15° 5.1.2 Treatment of unsatisfied equipment errors If the error of the adopted system exceeds the recommended value but meet the test requirements, the error and the actual maximum error shall be recorded in the test report, as shown in Annex B. 5.2 Transducer installation The installation position of the transducer in the reference coordinate system shall be accurately recorded for appropriate data transformation in data processing. See Annex C for transducer installation. 5.3 Data processing 5.3.1 General The frequency range relevant on test and evaluation of dynamics of passenger cars is between 0 Hz and 5 Hz. 5.3.2 Analog signal debugging 5.3.2.1 The bandwidth of the transducer and the acquisition system shall not be less than 8 Hz. 5.3.2.2 In order to execute the necessary filtering of signals, low-pass filters shall be employed. The width of the passband (from 0 Hz to frequency f0 at -3 dB) shall not be less than 9 Hz. Amplitude errors shall be less than ±0.5% in the relevant frequency range of 0 Hz to 5 Hz. All analog signals shall be processed with filters having phase characteristics sufficiently similar to ensure the same time delay due to filtering. Note: In order to preserve low-frequency signals, the signals shall be DC coupled. During analog filtering of signals with different frequency contents, phase shifts can occur. Because of this, a digital data processing method such as that given in 5.3.3 is preferable. 5.3.3 Aliasing error and anti-alias filter 5.3.3.1 Preparation of analog signal processing includes consideration of sampling rate and filter amplitude attenuation, and filter phase lags and time delays to avoid aliasing errors. 5.3.3.2 Considerations for sampling and digitization: a) a pre-sampling magnification ensuring the minimum digitization error; b) the number of bits for each sampling; c) the number of samples per cycle; d) sample and hold amplifier; e) sample space; f) for other phaseless digital filters, consideration shall be given to the selection of passband, stop band, attenuation, allowable ripple, and the correction of filter phase lag. 5.3.3.3 In order to achieve the acquisition accuracy of ±0.5% for the overall data, the above influencing factors shall be taken into comprehensive consideration. 5.3.3.4 See Annex D for attenuation and phase shift of Butterworth filter. In order to avoid aliasing errors that cannot be corrected, the analog signals shall be appropriately filtered before sampling and digitizing. The order of the filters used and their passband shall be chosen according to both the required flatness in the relevant frequency range and the sampling rate. The minimum filter characteristics and sampling rate shall be such that: a) within the relevant frequency range of 0 Hz to fmax(fmax-5 Hz), the maximum attenuation of analog signal shall be less than the resolution of the signal digitization, and b) at one-half the sampling rate (i.e. the Nyquist or “folding” frequency), the magnitudes of all frequency components of signal and noise shall be reduced to less than the digital resolution. Example: For a resolution of 0.05 %, the filter (within 5 Hz) attenuation shall be less than 0.05 % and the attenuation shall be greater than 99.95 % at all frequencies greater than one-half the sampling rate. 5.3.3.5 Recommended anti-alias filters are four-order or higher, see Annex D. 5.3.3.6 Anti-alias filtering shall be performed and excessive analog signal filtering shall be avoided. In addition, all filters shall have sufficiently similar phase characteristics such that time delay differences lie within the required accuracy for the time measurement. Note: Phase shifts are especially significant when measured variables are multiplied together to form new variables. This is because while amplitudes multiply, phase shifts and associated time delays add. Phase shifts and time delays are reduced by increasing f0, the cut-off frequency of filter. 5.3.4 Sampling and digitization 5.3.4.1 To limit dynamic errors caused by changing analog inputs to 0.1 %, the sampling or digitizing time shall be less than 32 μs. All pairs or sets of data samples to be compared shall be taken simultaneously or over a sufficiently short time period. 5.3.4.2 The digitizing system shall have a minimum resolution of 12 bits (±0.05 %) and an accuracy of 2LSB(±0.1 %). Amplification of the analog signal before digitization shall be such that during the digitization process, the composite error shall be less than 0.2 % due to limited resolution and inaccurate digitization. 5.3.5 Phaseless digital filters For filtering in data evaluation, phaseless (zero-phase-shift) digital filters incorporating the following characteristics shall be used (see Figure 1): ——passband range of from 0 Hz to 5 Hz; ——stopband beginning at 10 Hz to 15 Hz; ——filter gain in passband of 1±0.005; ——filter gain in stopband of ±0.01. Key: X——frequency, f(Hz); Y——filter gain; a——passband; b——stopband. Figure 1 Required characteristics of phaseless digital filters 6 Test conditions 6.1 General Requirements for ambient conditions and vehicle test conditions are established in the following subclauses; these requirements shall be maintained throughout the specific test. Any deviations shall be shown in the test report (see Annexes B and E) including the individual diagrams of the presentation of results. For each test procedure, the test-specific conditions and those which cannot be kept constant (e.g. tread depths) shall be recorded in a separate test report in accordance with Annex E. 6.2 Test track All tests shall be carried out on a smooth, clean, dry and uniform paved road surface. The gradient of this surface to be used shall not exceed 2 % (1.5 % recommended) in any direction. For each test, the road surface conditions and paving material shall be recorded in the test report (see Annex E). 6.3 Wind velocity The ambient wind velocity shall not exceed 5 m/s during a test. For each test, the climate conditions shall be recorded in the test report (see Annex E). 6.4 Test vehicle 6.4.1 General data of the test vehicle shall be presented in the test report in accordance with Annex B. The general data shall be recorded again for any change of parameters (such as load) of vehicles. 6.4.2 Wheel alignment parameters shall meet the product design requirements. 6.5 Tyre 6.5.1 New tyres shall be fitted on the test vehicle according to the vehicle manufacturer's specifications. lf not specified by the tyre manufacturer, they shall be run in for at least 150 km the test vehicle or an equivalent vehicle without excessively harsh use (severe braking, acceleration, cornering, hitting the kerb, etc.). After run-in, the tyres shall be maintained at the same position on the vehicle for the tests. 6.5.2 Tyres shall have a tread depth (including the width of the tyre contacting the ground and the whole tyre surface) of at least 90 % of the original values. 6.5.3 The date of production of the tyre shall be recorded in the test conditions, as shown in Annex E, and the test tyre shall not exceed one year from the date of production. 6.5.4 Tyres shall be inflated to the pressure specified by the vehicle manufacturer for the test ambient temperature. For tyre pressure less than or equal to 250 kPa, the error of cold inflation pressure is ±5 kPa; when the tyre pressure exceeds 250 kPa, the error does not exceed 2%. 6.5.5 The inflation pressure and tread depth of the tyres determined before tyre warm-up shall be recorded in the test report (see Annex E). 6.5.6 Tests may also be performed under conditions other than general tyre conditions. The details shall be noted in the test report (see Annex E). 6.5.7 As the tread depth or uneven tread wear can have a significant influence on test results, it is recommended that they be taken into account when making comparisons between vehicles or between tyres. 6.6 Critical components Models and types of critical components likely to influence the complete vehicle performance tests and design parameters likely to influences the tests (e.g. shock absorber, suspension geometry) shall be as specified by the manufacturer. Any deviations from manufacturer specification shall be noted in the presentation of general data (see Annex B). 6.7 Loading conditions 6.7.1 The total test mass shall be between the complete vehicle kerb mass and the maximum authorized total mass. The maximum authorized axle loads shall not be exceeded. 6.7.2 Care shall be taken to generate a minimum deviation in the location of the centre of gravity and in the moments of inertia as compared to the loading conditions of the vehicle in normal use. The resulting wheel loads shall be determined and recorded in the test report, as shown in Annex B. 6.8 Drivetrain conditions of the vehicle For vehicles with regenerative braking capabilities, the specific vehicle configuration can alter the dynamic vehicle behaviour while releasing the accelerator pedal and/or while pressing the brake pedal. For these vehicles, the different dynamic vehicle behaviour with or without active regenerative braking shall be considered while performing the tests. The selected level of regenerative braking capability and the transmission lever position shall be documented in the test report. 6.9 Active systems For vehicles with active systems influencing the test results, such as active steering, electronic stability control or active suspensions, the different dynamic vehicle behaviours possible with different settings of the systems shall be considered while performing the tests. If the driver can choose between different settings of the system, e.g. by a “sport/comfort” switch, the settings chosen for the test shall be documented in the test report. 7 Test preparation 7.1 Warm-up All relevant vehicle components shall be warmed up prior to the tests in order to achieve a temperature representative of normal driving conditions. Tyres shall also be warmed up to achieve an equilibrium temperature and pressure representative of normal driving conditions. A procedure equivalent to driving at the test speed for a distance of 10 km or 500 m at a lateral acceleration of 3 m/s2 (both left and right turn each) may be appropriate for warming up the tyres. 7.2 Initial conditions 7.2.1 General 7.2.1.1 The initial driving condition is specified in each vehicle dynamics test procedure. It may be either as steady-state, straight-ahead or steady-state circular run. 7.2.1.2 If there is no specific requirement in the test standard, during the test, for manual transmission, the high gear shall be selected from the multiple gears applicable, and for automatic transmission, the D gear shall be adopted. The position of the transmission lever and the selected driving program shall be recorded in the test report (see Annex E). 7.2.1.3 The position of the steering wheel and the accelerator pedal shall be kept as constant as possible during the initial driving condition. The moment of observation, tss, used to evaluate steady state conditions, is defined as the point in time which is usually between 0.5 s and 0.8 s before the reference point in time, t0, of the specific test procedure. The initial condition is considered to be sufficiently constant if, for the moment of observation, tss, the requirements of 7.2.2 and 7.2.3 are fulfilled (see Figure 2, defined t1 and t2). Note: For test procedures used to determine only steady-state values, the moment of observation tss and the reference point t0 will be identical. Key: X——time (s); Y——test variable; t0——moment in the test; t1——measuring time 1; t2——measuring time 2; tss——moment of observation for evaluating steady-state conditions. Figure 2 Definition of times for observation in test 7.2.2 Steady-state straight-ahead run 7.2.2.1 The longitudinal velocity in the initial driving condition shall not deviate by more than ±1 km/h (±2 km/h for velocities above 100 km/h) from the nominal value during the time interval from t1 to t2 and the mean value of lateral acceleration shall be within a range from -0.3 m/s2 to 0.3 m/s2. The standard deviation of the lateral acceleration shall not exceed 0.3 m/s2. As an alternative to the limits of lateral acceleration, the mean value of the yaw velocity shall be within a range from -0.5°/s to 0.5°/s, and the standard deviation of the yaw velocity shall not exceed 0.5°/s. 7.2.2.2 The difference between the mean values of the longitudinal velocity during the time intervals t1 to ts and tss to t2 shall not exceed ±1 km/h (±2 km/h for velocities above 100 km/h). 7.2.3 Steady-state circular run 7.2.3.1 The initial radius, R0, may be calculated using equation (1) or (2): (1) (2) where, vX0——the initial longitudinal velocity; dΨ/dt——the yaw velocity; aY0——the initial lateral acceleration. 7.2.3.2 The radius in the initial driving condition shall not deviate by more than 2 % or ±2 m from the nominal value during the time interval from t1 to t2. 7.2.3.3 For the time interval t1 to t2, the standard deviation of the lateral acceleration shall not exceed 5 % of its mean value and the standard deviation of the longitudinal velocity shall not exceed 3 % of its mean value. 7.2.3.4 The difference between the mean values during the time intervals t1 to tss and tss to t2, shall not exceed the nominal value for the lateral acceleration by more than 5 % and the longitudinal velocity by more than 3 %. 7.2.3.5 For the time interval t1 to t2,the mean value of the lateral acceleration shall not deviate from the nominal value by more than ± 3%. Foreword i 1 Scope 2 Normative references 3 Terms and definitions 4 Variables 5 Measurement 6 Test conditions 7 Test preparation Annex A (Informative) Structural changes between this document and ISO 15037-1: Annex B (Normative) Test report — General data Annex C (Informative) Transducers and their installation Annex D (Informative) Analog filtering: Butterworth filter Annex E (Normative) Test condition 轻型汽车操纵稳定性试验通用条件 1 范围 本文件规定了轻型汽车操纵稳定性试验通用条件。 本文件适用于最大设计总质量不超过3.5t的M1类、M2类和N1类车辆。 2 规范性引用文件 下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 12549—2013 汽车操纵稳定性术语及其定义(ISO 8855:2011,NEQ) 3 术语和定义 本文件没有需要界定的术语和定义。 4 变量 4.1 参考坐标系 试验记录的运动变量应满足GB/T 12549—2013中的坐标系定义,坐标原点通常取在车辆质心,也可取在其他位置处,但应记录在试验报告中,见附录B。 4.2 应确定的变量 与车辆操纵稳定性相关的驾驶员输入和车辆响应描述主要变量如下: ——转向盘转角,δH; ——转向盘力矩,MH; ——纵向速度,vX; ——整车侧偏角,β;或者侧向速度,vY; ——纵向加速度,aX; ——侧向加速度,aY; ——横摆角速度,dΨ/dt; ——侧倾角速度,dφ/dt; ——俯仰角速度,dθ/dt; ——侧倾角,φ; ——俯仰角,θ。 所有参考该标准的测试试验均应指明使用了哪些变量。依据特定的标准进行试验,可增加或推荐其他变量。这些变量可以直接测量或者由测量值计算得到。 5 测量 5.1 测量设备要求 5.1.1 设备测量工作范围及误差要求 试验采用多通道采集系统和传感器测量。传感器和记录系统的工作范围以及推荐的最大误差如表1所示。无论是测量还是计算的变量均宜达到指定的精度要求,为了计算某些特征值,应提高测量精度。 表1 各种变量及其典型工作范围和推荐的最大误差 变量 典型工作范围 推荐最大误差 转向盘转角 —1 080°~1 080° ±1°,|δH|<50°时 ±2°,50°<|δH|<180°时 ±4°,|δH|>180°时 转向盘力矩 —30 N·m~30 N·m ±0.1 N·m,|MH|≤10 N·m ±0.3 N·m,|MH|>10 N·m 纵向速度 0 km/h~180 km/h ±1 km/h,vX≤100 km/h ±2 km/h,vX>100 km/h 侧向速度 —36 km/h~36 km/h ±0.72 km/h 侧偏角 —20°~20° ±0.3° 纵向加速度 —15 m/s2~15 m/s2 ±0.15 m/s2 侧向加速度 —15 m/s2~15 m/s2 ±0.15 m/s2 横摆角速度 —50°/s~50°/s ±0.3°/s,dΨ/dt≤20°/s时 ±1°/s,dΨ/dt>20°/s时 俯仰角速度 —50°/s~50°/s ±0.3°/s,dθ/dt≤20°/s时 ±1°/s,dθ/dt>20°/s时 侧倾角速度 —50°/s~50°/s ±0.3°/s,dφ/dt≤20°/s时 ±1°/s,dφ/dt>20°/s时 侧倾角 —15°~15° ±0.15° 俯仰角 —15°~15° ±0.15° 5.1.2 设备误差不满足要求的处理 若采用系统的误差超过推荐值但又满足试验要求时,则该误差以及实际最大误差应记录在试验报告中,见附录B。 5.2 传感器安装 应准确记录传感器在参考坐标系中的安装位置,以便数据处理中对数据准确转化,传感器安装参见附录C。 5.3 数据处理 5.3.1 概述 轻型汽车操纵稳定性的测试、评价的频率范围0 Hz~5 Hz。 5.3.2 模拟信号试调 5.3.2.1 传感器和采集系统的带宽应不小于8 Hz。 5.3.2.2 对信号的滤波应采用低通滤波器。通频带宽(从0 Hz到—3 dR处频率f0)不应小于9 Hz。在0 Hz~5 Hz频率范围内,幅值误差应小于±0.5%。所有模拟信号应使用具有相同相位特性的滤波器进行处理,以保证由于滤波带来的时间延迟是相同的。 注:为保存低频信号,信号采用直流耦合。由于包含不同频率成分的模拟信号滤波处理会发生相移,推荐采用5.3.3中描述的数字信号处理方法。 5.3.3 混叠误差及抗混叠滤波器 5.3.3.1 模拟信号处理的准备包括:选择避免混叠误差的采样频率和滤波器幅值衰减特性、滤波器的相位滞后和时间延迟特性。 5.3.3.2 采样和数字化应考虑的内容: a) 保证数字化误差最小的预采样放大率; b) 每次采样的位数; c) 每个周期的采样数; d) 采样和保持放大器; e) 样本空间; f) 对于其他无相移数字滤波器应考虑通带、阻带、衰减、允许纹波的选择,以及滤波器相位滞后的校正。 5.3.3.3 为了实现整体数据达到±0.5%的采集精度,应综合考虑上述影响因素。 5.3.3.4 巴特沃斯滤波器的衰减和相移信息参见附录D。应避免无法校正的混叠误差,在采样和数字化之前对模拟信号应正确滤波。滤波器阶次及其通带的选择应根据关注频率范围和对应采样频率下信号平整度的要求来确定。最低滤波特性和最小采样频率应满足: a) 在0 Hz~fmax(fmax-5 Hz)的频率范围内,模拟信号的最大衰减量应小于信号数字化的分辨率; b) 在二分之一采样频率处(即奈奎斯特频率或折叠频率),信号和噪声的所有频率成分的大小要减小到小于数字化分辨率。 示例:对于0.05%的分辨率,在5 Hz范围内滤波器的幅值衰减小于0.05%。对于二分之一采样频率以上的所有频率处幅值衰减大于99.95%。 5.3.3.5 推荐抗混叠滤波器是四阶或者更高,参见附录D。 5.3.3.6 应抗混叠滤波,也应避免过度的模拟信号滤波。此外,所有的滤波器应具有相同的相位特性,以确保信号之间的时间延迟差异满足时域测量精度的要求。 注:因为被测变量幅值相乘时,相移及相应的时间延迟会增加,因此当被测变量相乘后形成新的变量时,相移尤其需注意。通过增加滤波器的截止频率f0可以降低相移及时间延迟。 5.3.4 采样及数字化 5.3.4.1 为限制模拟输入变化超过0.1%而引起的动态误差,采样或数字化的时间应小于32 μs。每一对或一组要比较的样本数据应同时或在足够短的时间内采集。 5.3.4.2 数字化应采用12位或更高分辨率(±0.05%),2 LSB(±0.1%)精度的系统。数字化前模拟信号的放大应保证:在数字化过程中,由于有限分辨率和数字化的不准确而导致的综合误差应小于0.2%。 5.3.5 无相移数字滤波器 对于用于评价数据的滤波,无相移(0相移)数字滤波器应具有以下特点(见图1): ——通带的范围应是0 Hz~5 Hz; ——阻带应在10 Hz~15 Hz之间开始; ——通带滤波器增益应是1±0.005; ——阻带滤波器增益应是±0.01。 标引序号说明: X——频率,f(Hz); Y——滤波器增益; a——通带; b——阻带。 图1 无相移数字滤波器特点要求 6 试验条件 6.1 总则 本章主要说明环境条件和汽车测试条件的要求,特定的试验也应遵循这些条件。任何与本文件规定不一致的都应在测试报告中列出,见附录B和附录E,包括显示结果的各图表。对于每种测试方法,特定的测试条件和会变化的数据(如轮胎花纹深度)应按附录E的格式做一个单独的测试报告。 6.2 试验场地 所有试验都应在平整、干净、干燥并且铺设均匀的道路上进行。测试道路的坡度在任何方向不应超过2%(推荐1.5%)。对于每次试验,测试报告应记录试验道路表面条件和道路材料,见附录E。 6.3 风速 试验中周围环境风速应不超过5 m/s。每次试验,试验报告均应记录测试时的气候条件,见附录E。 6.4 试验车辆 6.4.1 试验车辆的基本数据信息应记录在附录B的测试报告中。任何汽车参数的变化(如负荷),均应再次记录基本数据信息。 6.4.2 车轮定位参数应满足产品设计要求。 6.5 轮胎 6.5.1 轮胎应按照汽车制造商的说明书选择新轮胎安装到试验车辆上。如果轮胎制造商没有明确说明,轮胎应在被测试汽车或者相似汽车上磨合至少150 km,但要保证无过度使用,如紧急刹车、急加速、急转弯、压路肩等等。磨合后,轮胎应保持在相同的位置进行测试。 6.5.2 轮胎花纹深度(包括轮胎整个接触地面的宽度及整个轮胎表面)应是初始轮胎花纹深度90%以上。 6.5.3 在试验测试条件中应记录轮胎的生产日期,见附录E,试验轮胎距生产日期不应超过一年。 6.5.4 轮胎应按照汽车制造商说明的对应试验环境温度的压力充气。对于胎压小于或等于250 kPa,冷充气压力的误差为±5 kPa;胎压超过250 kPa时,误差不超过2%。 6.5.5 预热前的轮胎压力和轮胎胎面花纹深度应在试验报告中记录,见附录E。 6.5.6 除基本轮胎条件外,其他条件下也可进行试验。具体的细节应在试验报告中记录(见附录E)。 6.5.7 当轮胎花纹深度或不均匀磨损对测试结果有显著影响时,在汽车之间或轮胎之间性能对比时推荐考虑该因素。 6.6 关键部件 影响整车性能测试的关键部件型号及类型和影响试验的设计参数(如减震器参数和悬架几何参数)应满足制造商的说明。任何偏离制造商说明的数据都应记录在基本信息里,见附录B。 6.7 载荷条件 6.7.1 试验总质量应在汽车整备质量和最大允许总质量之间,最大轴荷不应超过允许值。 6.7.2 应保证重心位置和惯量与正常使用载荷条件下的偏差最小。应测量轮荷并记录到试验报告中,见附录B。 6.8 动力传动状态 对于具有再生制动能力的车辆,当松开加速踏板和/或踩下制动踏板时车辆的特定设置能改变车辆的动态行为。对于这类车辆,试验时应分别测试有无主动再生制动时车辆的动态行为。选择的再生制动能力水平和换挡杆位置应记录在测试报告中。 6.9 主动系统 对于具有主动转向、电子稳定性控制或主动悬架等影响试验结果的主动系统的车辆,试验时应考虑不同系统模式对车辆动态行为的影响。如果驾驶员可以选择不同的模式,比如“运动/舒适”模式,应将所选择的模式记录在测试报告中。 7 试验准备 7.1 预热 在试验开始之前,所有汽车的相关部件都应进行预热从而使其温度能够达到代表一般驾驶条件下的温度。轮胎也应进行预热使其达到能够代表正常驾驶条件的平衡温度和压力。汽车应按照试验速度行驶10 km或者以3 m/s2的侧向加速度行驶500 m(包括向左转向和向右转向)对轮胎进行预热。 7.2 初始条件 7.2.1 概述 7.2.1.1 汽车操纵稳定性试验初始行驶状态为稳态直线行驶或稳态圆周行驶。 7.2.1.2 如果在试验标准中没有特别要求,试验过程中,对于手动变速器来说,对于多个挡位适用的应选用可适用的最高挡位,对于自动变速器来说应采用D挡。换挡杆位置以及所选择的驾驶模式应记录在试验报告中,见附录E。 7.2.1.3 在初始行驶条件下,转向盘的位置以及加速踏板的位置应尽可能保持不变。用来估计稳态条件的观测时刻tss定义为参考时间点t0之前0.5 s~0.8 s之间的时间点。观测时刻tss达到7.2.2或7.2.3的要求(如图2所示,定义的t1和t2),认为初始条件是稳定的。 注:如果仅是用来确定稳态值的试验方法,观测时刻tss与参考时间t0相同。 标引序号说明: +标准差 平均值 —标准差 X——时间(秒); Y——测试变量; t0——试验中的时刻; t1——测量时间1; t2——测量时间2; tss——估计稳态工况的观测时刻。 图2 试验观测时刻定义 7.2.2 稳态直线行驶 7.2.2.1 在t1~t2时间段内初始行驶的纵向速度不应超过标称值的±1 km/h(速度超过100 km/h时,偏差不超过±2 km/h),侧向加速度的平均值应保持在—0.3 m/s2~0.3 m/s2的范围内,侧向加速度标准差不应超过0.3 m/s2。作为侧向加速度限制的替代,应选择限定横摆角速度的平均值在—0.5°/s~0.5°/s范围内,横摆角速度的标准差不超过0.5°/s。 7.2.2.2 在时间段t1~ts、及tss~t2内,纵向速度的平均值偏差不应超过±1 km/h(速度超过100 km/h时,偏差不应超过±2 km/h)。 7.2.3 稳态圆周行驶 7.2.3.1 初始半径R0按公式(1)或公式(2)计算: (1) (2) 式中: vX0——初始纵向速度; dΨ/dt——横摆角速度; aY0——初始侧向加速度。 7.2.3.2 在时间段t1~t2范围内,初始行驶工况的半径相对于名义半径的偏差不应超过2%,并且最大偏差不超过±2m。 7.2.3.3 在t1~t2时间范围内,侧向加速度的标准差不应超过其平均值的5%;纵向速度的标准差不应超过其平均值的3%。 7-2.3.4 在时间段t1~tss及tss~t2内,侧向加速度的均值偏差不应超过名义值的5%,纵向速度的均值偏差不应超过名义值的3%。 7.2.3.5 在t1~t2时间段内,侧向加速度的平均值不应超过标称值的±3%。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 |
本页关键词: |
GB/T 40501-2021, GB 40501-2021, GBT 40501-2021, GB/T40501-2021, GB/T 40501, GB/T40501, GB40501-2021, GB 40501, GB40501, GBT40501-2021, GBT 40501, GBT40501 |