![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
1 General provisions 1.0.1 This code is formulated with a view to reasonably carrying out fire protection design of steel structures in buildings, ensuring construction quality, standardizing acceptance and maintenance management, reducing fire hazards, and protecting personal and property safety. 1.0.2 This code is applicable to the fire protection design and the construction and acceptance of fire protection of the steel structures and composite structures such as concrete-filled steel tubular columns, steel deck-concrete composite slabs and composite steel and concrete beams in industrial and civil buildings. It is not applicable to built-in steel reinforced concrete composite structures. 1.0.3 In addition to those specified in this code, the fire protection design and construction and acceptance of fire protection of steel structures in buildings shall also comply with those specified in the current relevant standards of the nation. 2 Terms and symbols 2.1 Terms 2.1.1 fire-resistant steel steel whose yield strength at 600℃ is not less than 2/3 of its yield strength at room temperature 2.1.2 concrete-filled steel tubular column structural member formed by filling concrete into a steel tube and capable of bearing external load with the steel tube and its core concrete 2.1.3 composite steel and concrete beam beam formed by the combination of concrete flange plate and steel beam via shear connector and capable of bearing force as a whole 2.1.4 steel deck-concrete composite slab floor slab formed by pouring concrete onto the profiled steel deck and capable of bearing force with both 2.1.5 section factor ratio of surface area exposed to fire of a steel member to its corresponding volume 2.1.6 standard fire temperature-time curve curve of the average temperature of air in a fire resistance test furnace over time in a standard fire resistance test 2.1.7 standard fire fire with the temperature of hot flue gas determined according to the standard fire temperature-time curve 2.1.8 equivalent time of fire exposure time taken by a steel member in an actual fire to reach a temperature the same as that it reaches after being exposed to a standard fire 2.1.9 temperature effects on structural behavior internal force and deformation of a structure (member) due to its temperature change 2.1.10 fire limit state deformation state reached by a structure or member at the time it is no longer being able to bear external action or suitable for continuing to bear load due to fire 2.1.11 load ratio ratio of the design load effect of a structure or member in fire to its design bearing capacity at room temperature 2.1.12 critical temperature temperature at which a steel member reaches its fire limit state in fire 2.2 Symbols 2.2.1 Material properties cc——the specific heat capacity of concrete; ci——the specific heat capacity of fire protection layer; cs——the specific heat capacity of steel; Ec——the elastic modulus of concrete at room temperature; EcT——the elastic modulus of concrete at high temperature; Es——the elastic modulus of steel at room temperature; EsT——the elastic modulus of steel at high temperature; f——the design strength of steel at room temperature; fc——the design axial compressive strength of concrete at room temperature; fck——the standard axial compressive strength of concrete at room temperature; ft——the design tensile strength of concrete at room temperature; fT——the design strength of steel at high temperature; Ri——the equivalent thermal resistance of fire protection layer; αc——the thermal expansion coefficient of concrete; αs——the thermal expansion coefficient of steel; λc——the thermal conductivity coefficient of concrete; λs——the thermal conductivity coefficient of steel; ρi——the density of fire protection material; ρs——the density of steel; ρc——the density of concrete. 2.2.2 Action, effect and resistance Mp——the plastic moment; Mu——the design flexural capacity of concrete filled steel tube under pure bending at room temperature; Nu——the design compressive bearing capacity of short concrete-filled steel tubular column subjected to axial compression at room temperature; N*——the design compressive bearing capacity of concrete-filled steel tubular column at room temperature; Rd——the design resistance of structural member; SGK——the load effect value calculated according to the standard value of permanent load; Sm——the design value of action (load) effect combination; SQk——the load effect value calculated according to the standard value of floor or roof live load; STk——the action effect value calculated according to the standard temperature value of the structure in fire; SWk——the load effect value calculated according to the standard value of wind load. 2.2.3 Geometric parameters Ac——the cross-sectional area of concrete in concrete-filled steel tubular column; As——the cross-sectional area of steel tube in concrete-filled steel tubular column; C——the perimeter of section; D——the section height of concrete-filled steel tubular column; di——the thickness of fire protection layer; F——the surface area exposed to fire per unit length of a member; Fi——the surface area exposed to fire per unit length of steel member with fire protection; hc1——the thickness of concrete flange plate; hc2——the height of pallet of the profiled steel sheet; hcb——the equivalent thickness of concrete flange plate; hs——the height of steel beam; hw——the height of web of the steel beam; l——the length or the span length; l0——the calculation length; ttf——the thickness of upper flange of steel beam; tw——the thickness of web of the steel beam; tbf——the thickness of lower flange of the steel beam; V——the volume per unit length of steel member; W——the gross section modulus; Wn——the net section modulus; Wp——the plastic modulus of section. 2.2.4 Time and temperature t——the duration of the time of fire; te——the equivalent time of fire exposure; Tc——the temperature of concrete; Td, T′d, T″d——the critical temperature of a member; Tg——the average temperature of hot flue gas at the time of fire development at t; Tg0——the indoor ambient temperature before fire; Tm——the highest temperature of a member within the time of design fire resistance rating; Ts——the temperature of steel or a steel member; Δt——the time step; ΔTs——the temperature rise of a steel member within Δt. 2.2.5 Other parameters related to fire resistance calculation F/V——the section factor of a member without fire protection; Fi/V——the section factor of a member with fire protection; kT——the load capacity factor of concrete-filled tubular column in fire; R, R′——the load ratio; α——the comprehensive heat transfer coefficient; αb——the stability checking calculation parameter of flexural steel member at high temperature; αc——the convective heat transfer coefficient, or the stability checking calculation parameter of axial compression steel member at high temperature; αr——the heat transfer coefficient of thermal radiation; βmx, βmy——the equivalent bending moment coefficient in the action plane of bending moment; βtx, βty——the equivalent bending moment coefficient out the action plane of the bending moment; γ, γm——the plastic adaption coefficient of section; γ0T——the coefficient for importance of structure; γG——the partial coefficient of permanent load; εr—the comprehensive radiance; η——the section influence coefficient; ηcT——the reduction factor of axial compressive strength of concrete at high temperature; ηsT——the reduction factor of yield strength of steel at high temperature; λ——the slenderness ratio of a member; λ0——the critical slenderness ratio for elastoplastic instability; λp——the critical slenderness ratio for elastic instability; σ——the Stefan-Boltzmann constant; φ——the stability coefficient of axial compression steel member at room temperature; φb——the stability coefficient of flexural steel member at room temperature; φT——the stability coefficient of axial compression steel member at high temperature; φbT——the stability coefficient of flexural steel member at high temperature; φf——the frequent value coefficient of floor or roof live load; φq——the quasi-permanent value coefficient of floor or roof live load; φw——the frequent value coefficient of wind load; χcT——the reduction factor of elastic modulus of concrete at high temperature; χsT——the reduction factor of elastic modulus of steel at high temperature. 3 Basic requirements 3.1 Fire protection requirements 3.1.1 The design fire resistance rating of steel structural members shall be determined based on the fire resistance class in accordance with the current national standard GB 50016 Code for fire protection design of buildings. The design fire resistance rating of column bracing shall be the same as that of the columns, the design fire resistance rating of floor bracing shall be the same as that of beams, and the design fire resistance rating of roof bracing and tie bars shall be the same as that of roof load-bearing members. 3.1.2 Fire protection measures shall be taken when the fire resistance rating of steel structural members is less than the design fire resistance rating upon checking calculation. 3.1.3 The fire protection of steel structure joints shall be the same as the highest fire protection requirements among the members connected. 3.1.4 The fire protection design documents of steel structures shall indicate the fire resistance class of the building, the design fire resistance rating of the members, the fire protection measures for the members, and the performance requirements and design indicators of the fire protection materials. 3.1.5 When the equivalent thermal conductivity coefficient of the fire protection materials used in construction is inconsistent with the requirements of the design documents, the application thickness of the protection layer shall be determined according to the principle that the equivalent thermal resistance of the fire protection layer is equal and shall also be approved by the design unit. For the non-intumescent fire retardant coating for steel structure and the fire board, the application thickness of the fire protection layer may be determined according to Annex A herein; for intumescent fire retardant coating, the aforesaid application thickness may be directly determined according to the equivalent thermal resistance of the coating. 3.2 Fire protection design 3.2.1 The steel structures shall be subjected to fire resistance checking and fire protection design according to their fire limit state. 3.2.2 The design value of the most unfavorable load (action) effect combination for the fire limit state of steel structures shall be determined according to the most unfavorable value of the following combination values by taking the loads (actions) that may occur simultaneously on the structure during fire into account: Sm=γ0T(γGSGk+STk+φfSQk) (3.2.2-1) Sm=γ0T(γGSGk+STk+φqSQk+φwSWk) (3.2.2-2) where, Sm——the design value of action (load) effect combination; SGk——the load effect value calculated according to the standard value of permanent load; STk——the action effect value calculated according to the standard temperature value of the structure in fire; SQk——the load effect value calculated according to the standard value of floor or roof live load; SWk——the load effect calculated according to the standard value of wind load; γ0T——the coefficient for importance of structure; for buildings with fire resistance class I, γ0T=1.1; for other buildings, γ0T=1.0; γG——the partial coefficient of permanent load, which generally is 1.0; when the permanent load is favorable, γG=0.9; φw——the frequent value coefficient of wind load, φw=0.4; φf——the frequent value coefficient of floor or roof live load, which shall be taken in accordance with those specified in the current national standard GB 50009 Load code for the design of building structures; φq——the quasi-permanent value coefficient of floor or roof live load, which shall be taken in accordance with those specified in the current national standard GB 50009 Load code for the design of building structures. 3.2.3 The fire protection design of steel structures shall be conducted with the fire protection design method which is based on fire resistance checking of integral structure or that of members according to the importance of the structure, structure type and load characteristics, etc., and shall also meet the following requirements: 1 for large-span steel structures with a span of not less than 60m, the fire protection design method based on fire resistance checking of integral structure should be adopted; 2 for prestressed steel structures and steel structures in large-span buildings with a span of not less than 120m, the fire protection design method based on fire resistance checking of integral structure shall be adopted. 3.2.4 The fire protection design method of steel structures based on the fire resistance checking of integral structure shall meet the following requirements: 1 each fire compartment shall be considered as a fire condition and shall be subjected to fire resistance checking according to the most unfavorable fire scenario; 2 the thermal expansion effect of the structure, the influence of high temperature on the material properties of structures, and, if necessary, the influence of geometric nonlinearity of structures shall be taken into account. 3.2.5 The fire protection design method of steel structures based on the fire resistance checking of members shall meet the following requirements: 1 in the calculation of the combined effect of members in fire, for the members mainly subjected to flexural deformation such as flexural members, tension-flexure members and compression-flexure members, the thermal expansion effect may not be taken into account, the boundary constraints of the members in fire and the internal forces generated by them under external loads may adopt boundary constraints and internal forces at room temperature, and thus the combined effect of members in fire will be calculated; for the members mainly subjected to axial deformation such as axial tension members and axial compression members, the influence of thermal expansion effect on internal force shall be taken into account. 2 in the calculation of the bearing capacity of a member in fire, the highest average temperature of its section shall be taken as the member temperature, and the strength and elastic modulus of structural materials at corresponding temperature shall be adopted. 3.2.6 The fire resistance checking and fire protection design of steel structural members may be conducted with fire resistance rating method, bearing capacity method or critical temperature method, and shall meet the following requirements: 1 fire resistance rating method. Under the action of design load, the actual fire resistance rating of steel structural members in fire shall not be less than their design fire resistance rating, and shall be checked using the following formula. Thereinto, the actual fire resistance rating of the members may be determined through test according to the current national standards GB/T 9978.1 Fire-resistance tests - Elements of building construction - Part 1: General requirements, GB/T 9978.5 Fire-resistance tests - Elements of building construction - Part 5: Specific requirements for loadbearing horizontal separating elements, GB/T 9978.6 Fire-resistance tests - Elements of building construction - Part 6: Specific requirements for beams and GB/T 9978.7 Fire-resistance tests - Elements of building construction - Part 7: Specific requirements for columns, or calculated according to the relevant requirements of this code. tm≥td (3.2.6-1) 2 bearing capacity method. Within the time of design fire resistance rating, the design bearing capacity of steel structural members in fire shall not be less than the design combined effect value of the most unfavorable loads (actions), and shall be checked using the following formula. Rd≥Sm (3.2.6-2) 3 critical temperature method. Within the time of design fire resistance rating, the highest temperature of steel structural members in fire shall not be higher than their critical temperature, and shall be checked using the following formula. Td≥Tm (3.2.6-3) where, tm——the actual fire resistance rating of steel structural members in fire; td——the design fire resistance rating of steel structural members, which shall be determined in accordance with those specified in 3.1.1 hereof; Sm——the design value of action (load) effect combination, which shall be determined in accordance with those specified in 3.2.2 hereof; Rd——the design resistance of structural member, which shall be determined in accordance with those specified in Clauses 7 and 8 hereof; Tm——the highest temperature of a member within the time of design fire resistance rating, which shall be determined in accordance with those specified in Clause 6 hereof; Td——the critical temperature of a member, which shall be determined in accordance with those specified in Clauses 7 and 8 hereof. 1 General provisions 2 Terms and symbols 2.1 Terms 2.2 Symbols 3 Basic requirements 3.1 Fire protection requirements 3.2 Fire protection design 4 Fire protection measures and construction 4.1 Fire protection measures 4.2 Fire protection construction 5 Material properties 5.1 Steel 5.2 Concrete 5.3 Fire protection materials 6 Calculation of temperature of steel structures 6.1 Fire temperature-time curve 6.2 Calculation of temperature rise for steel members 7 Fire resistance checking and fire protection design of steel structures 7.1 Bearing capacity method 7.2 Critical temperature method 8 Fire resistance checking and fire protection design of steel-concrete composite structures 8.1 Concrete-filled steel tubular column 8.2 Steel deck-concrete composite slab 8.3 Composite steel and concrete beam 9 Construction and acceptance of fire protection 9.1 General requirements 9.2 Fire protection materials entering into construction site 9.3 Fire protection of fire retardant coating 9.4 Fire protection of fire boards 9.5 Fire protection of flexible blanket material 9.6 Fire protection of concrete, mortar and blocks 9.7 Combined fire protection 9.8 Acceptance of subitem works of fire protection Annex A Application thickness of fire protection layer Annex B Bearing capacity factor of concrete-filled steel tubular column in standard fire Annex C Design thickness of fire protection layer for concrete-filled steel tubular columns in standard fire Annex D Bearing capacity of composite slab in fire when considering membrane action Annex E Record of quality management and inspection on construction site Annex F Quality acceptance record of inspection lot of fire-protection for steel structures Annex G Quality acceptance record of subitem work of fire-protection for steel structures Explanation of wording in this code List of quoted standards 1 总 则 1.0.1 为了合理进行建筑钢结构防火设计,保证施工质量,规范验收和维护管理,减少火灾危害,保护人身和财产安全,制定本规范。 1.0.2本规范适用于工业与民用建筑中的钢结构以及钢管混凝土柱、压型钢板一混凝土组合楼板、钢与混凝土组合梁等组合结构的防火设计及其防火保护的施工与验收。不适用于内置型钢混凝土组合结构。 1.0.3建筑钢结构的防火设计及其防火保护的施工与验收,除应符合本规范的规定外,尚应符合国家现行有关标准的规定。 2术语和符号 2.1术 语 2.1.1耐火钢 fire-resisant steel 在600℃温度时的屈服强度不小于其常温屈服强度2/3的钢材。 2.1.2钢管混凝土柱 concrete-filled steel tubular column 在钢管中填充混凝土而形成且钢管及其核心混凝土能共同承受外荷载作用的结构构件。 2.1.3钢与混凝土组合梁 composite steel and concrete beam 由混凝土翼板和钢梁通过抗剪连接件组合而成,并能整体受力的梁。 2.1.4压型钢板组合楼板 steel deck-concrete composite slab 在压型钢板上浇筑混凝土,并能共同受力的楼板。 2.1.5截面形状系数 section factor 钢构件的受火表面积与其相应的体积之比。 2.1.6 标准火灾升温曲线 standard fire temperature-time curve 在标准耐火试验中,耐火试验炉内的空气平均温度随时间变化的曲线。 2.1.7标准火灾 standard fire 热烟气温度按标准火灾升温曲线确定的火灾。 2.1.8等效曝火时间 equivalent time of fire exposure 钢构件受标准火灾作用后的温度与其受实际火灾作用时达到相同温度的时间。 2.1.9温度效应temperature effects on structural behavior 结构(构件)因其温度变化所产生的结构内力和变形。 2.1.10耐火承载力极限状态 fire limit state 结构或构件受火灾作用达到不能承受外部作用或不适于继续承载的变形的状态。 2.1.11荷载比load ratio 火灾下结构或构件的荷载效应设计值与其常温下的承载力设计值的比值。 2.1.12临界温度 critical temperature 钢构件受火灾作用达到其耐火承载力极限状态时的温度。 2.2符 号 2.2.1材料性能 cc——混凝土的比热容; ci——防火保护层的比热容; cs——钢材的比热容; Ec——常温下混凝土的弹性模量; EcT——高温下混凝土的弹性模量; Es——常温下钢材的弹性模量; EsT——高温下钢材的弹性模量; f——常温下钢材的强度设计值; fc——常温下混凝土的轴心抗压强度设计值; fck——常温下混凝土的轴心抗压强度标准值; ft——常温下混凝土的抗拉强度设计值; fT——高温下钢材的强度设计值; Ri——保护层的等效热阻; αc——混凝土的热膨胀系数; αs——钢材的热膨胀系数; λc——混凝土的热传导系数; λs——钢材的热传导系数; ρi——防火保护材料的密度; ρs——钢材的密度; ρc——混凝土的密度。 2.2.2 作用、效应、抗力 Mp——塑性弯矩; Mu——常温下钢管混凝土受纯弯时的抗弯承载力设计值; Nu——常温下轴心受压钢管混凝土短柱的抗压承载力设计值; N*——常温下钢管混凝土柱的抗压承载力设计值; Rd——结构构件抗力的设计值; SGK——按永久荷载标准值计算的荷载效应值; Sm——荷载(作用)效应组合的设计值; SQk——按楼面或屋面活荷载标准值计算的荷载效应值; STk——按火灾下结构的温度标准值计算的作用效应值; SWk——按风荷载标准值计算的荷载效应值。 2.2.3几何参数 Ac——钢管混凝土柱中混凝土的截面面积; As——钢管混凝土柱中钢管的截面面积; C——截面周长; D——钢管混凝土柱的截面高度; di——防火保护层的厚度; F——单位长度构件的受火表面积; Fi——有防火保护钢构件单位长度的受火表面积; hc1——混凝土翼板的厚度; hc2——压型钢板托板的高度; hcb——混凝土翼板的等效厚度; hs——钢梁的高度; hw——钢梁腹板的高度; l——长度或跨度; l0——计算长度; ttf——钢梁上翼缘的厚度; tw——钢梁腹板的厚度; tbf——钢梁下翼缘的厚度; V——单位长度钢构件的体积; W——毛截面模量; Wn——净截面模量; Wp——截面塑性模量。 2.2.4时间、温度 t——火灾持续时间; te——等效曝火时间; Tc——混凝土的温度; Td、T′d、T″d——构件的临界温度; Tg——火灾发展到t时刻的热烟气平均温度; Tg0——火灾前室内环境的温度; Tm——在设计耐火极限时间内构件的最高温度; Ts——钢材或钢构件的温度; Δt——时间步长; ΔTs——钢构件在Δt内的温升。 2.2.5其他耐火计算相关参数 F/V——无防火保护构件的截面形状系数; Fi/V——有防火保护构件的截面形状系数; kT——火灾下钢管混凝土柱的承载力系数; R、R′——荷载比; α——综合热传递系数; αb——高温下受弯钢构件的稳定验算参数; αc——热对流传热系数或高温下轴心受压钢构件的稳定验算参数; αr——热辐射传热系数; βmx、βmy——弯矩作用平面内的等效弯矩系数; βtx、βty——弯矩作用平面外的等效弯矩系数; γ、γm——截面塑性发展系数; γ0T——结构重要性系数; γG——永久荷载的分项系数; εr——综合辐射率; η——截面影响系数; ηcT——高温下混凝土的轴心抗压强度折减系数; ηsT——高温下钢材的屈服强度折减系数; λ——构件的长细比; λ0——弹塑性失稳的界限长细比; λp——弹性失稳的界限长细比; σ——斯蒂芬-波尔兹曼常数; φ——常温下轴心受压钢构件的稳定系数; φb——常温下受弯钢构件的稳定系数; φT——高温下轴心受压钢构件的稳定系数; φbT——高温下受弯钢构件的稳定系数; φf——楼面或屋面活荷载的频遇值系数; φq——楼面或屋面活荷载的准永久值系数; φw——风荷载的频遇值系数; χcT——高温下混凝土的弹性模量折减系数; χsT——高温下钢材的弹性模量折减系数。 3基本规定 3.1防火要求 3.1.1 钢结构构件的设计耐火极限应根据建筑的耐火等级,按现行国家标准《建筑设计防火规范》GB 50016的规定确定。柱间支撑的设计耐火极限应与柱相同,楼盖支撑的设计耐火极限应与梁相同,屋盖支撑和系杆的设计耐火极限应与屋顶承重构件相同。 3.1.2钢结构构件的耐火极限经验算低于设计耐火极限时,应采取防火保护措施。 3.1.3钢结构节点的防火保护应与被连接构件中防火保护要求最高者相同。 3.1.4钢结构的防火设计文件应注明建筑的耐火等级、构件的设计耐火极限、构件的防火保护措施、防火材料的性能要求及设计指标。 3.1.5 当施工所用防火保护材料的等效热传导系数与设计文件要求不一致时,应根据防火保护层的等效热阻相等的原则确定保护层的施用厚度,并应经设计单位认可。对于非膨胀型钢结构防火涂料、防火板,可按本规范附录A确定防火保护层的施用厚度;对于膨胀型防火涂料,可根据涂层的等效热阻直接确定其施用厚度。 3.2防火设计 3.2.1 钢结构应按结构耐火承载力极限状态进行耐火验算与防火设计。 3.2.2钢结构耐火承载力极限状态的最不利荷载(作用)效应组合设计值,应考虑火灾时结构上可能同时出现的荷载(作用),且应按下列组合值中的最不利值确定: Sm=γ0T(γGSGk+STk+φfSQk) (3.2.2-1) Sm=γ0T(γGSGk+STk+φqSQk+φwSWk) (3.2.2-2) 式中:Sm——荷载(作用)效应组合的设计值; SGk——按永久荷载标准值计算的荷载效应值; STk——按火灾下结构的温度标准值计算的作用效应值; SQk——按楼面或屋面活荷载标准值计算的荷载效应值; SWk——按风荷载标准值计算的荷载效应值; γ0T——结构重要性系数;对于耐火等级为一级的建筑,γ0T=1.1;对于其他建筑,γ0T=1.0; γG——永久荷载的分项系数,一般可取γG=1.0;当永久荷载有利时,取γG=0.9; φw——风荷载的频遇值系数,取φw=0.4; φf——楼面或屋面活荷载的频遇值系数,应按现行国家标 准《建筑结构荷载规范》GB 50009的规定取值; φq——楼面或屋面活荷载的准永久值系数,应按现行国家标准《建筑结构荷载规范》GB 50009的规定取值。 3.2.3钢结构的防火设计应根据结构的重要性、结构类型和荷载特征等选用基于整体结构耐火验算或基于构件耐火验算的防火设汁方法,并应符合下列规定: 1跨度不小于60m的大跨度钢结构,宜采用基于整体结构耐火验算的防火设计方法; 2预应力钢结构和跨度不小于120m的大跨度建筑中的钢结构,应采用基于整体结构耐火验算的防火设计方法。 3.2.4 基于整体结构耐火验算的钢结构防火设计方法应符合下列规定: 1 各防火分区应分别作为一个火灾工况并选用最不利火灾场景进行验算; 2应考虑结构的热膨胀效应、结构材料性能受高温作用的影响,必要时,还应考虑结构几何非线性的影响。 3.2.5 基于构件耐火验算的钢结构防火设计方法应符合下列规定: 1计算火灾下构件的组合效应时,对于受弯构件、拉弯构件和压弯构件等以弯曲变形为主的构件,可不考虑热膨胀效应,且火灾下构件的边界约束和在外荷载作用下产生的内力可采用常温下的边界约束和内力,计算构件在火灾下的组合效应;对于轴心受拉、轴心受压等以轴向变形为主的构件,应考虑热膨胀效应对内力的影响。 2 计算火灾下构件的承载力时,构件温度应取其截面的最高平均温度,并应采用结构材料在相应温度下的强度与弹性模量。 3.2.6钢结构构件的耐火验算和防火设计,可采用耐火极限法、承载力法或临界温度法,且应符合下列规定: 1耐火极限法。在设计荷载作用下,火灾下钢结构构件的实际耐火极限不应小于其设计耐火极限,并应按下式进行验算。其中,构件的实际耐火极限可按现行国家标准《建筑构件耐火试验方法 第1部分:通用要求》GB/T 9978.1、《建筑构件耐火试验方法 第5部分:承重水平分隔构件的特殊要求》GB/T 9978.5、《建筑构件耐火试验方法 第6部分:梁的特殊要求》GB/T 9978.6、《建筑构件耐火试验方法 第7部分:柱的特殊要求》GB/T 9978.7通过试验测定,或按本规范有关规定计算确定。 tm≥td (3.2.6-1) 2承载力法。在设计耐火极限时间内,火灾下钢结构构件的承载力设计值不应小于其最不利的荷载(作用)组合效应设计值.并应按下式进行验算。 Rd≥Sm (3.2.6-2) 3临界温度法。在设计耐火极限时间内,火灾下钢结构构件的最高温度不应高于其临界温度,并应按下式进行验算。 Td≥Tm (3.2.6-3) 式中:tm——火灾下钢结构构件的实际耐火极限; td——钢结构构件的设计耐火极限,应按本规范第3.1.1条规定确定; Sm——荷载(作用)效应组合的设计值,应按本规范第3.2.2条的规定确定; Rd——结构构件抗力的设计值,应根据本规范第7章、第8章的规定确定; Tm——在设计耐火极限时间内构件的最高温度,应根据本规范第6章的规定确定; Td——构件的临界温度,应根据本规范第7章、第8章的规定确定。 4防火保护措施与构造 4.1防火保护措施 4.1.1 钢结构的防火保护措施应根据钢结构的结构类型、设计耐火极限和使用环境等因素,按照下列原则确定: 1 防火保护施工时,不产生对人体有害的粉尘或气体; 2钢构件受火后发生允许变形时,防火保护不发生结构性破坏与失效; 3施工方便且不影响前续已完工的施工及后续施工; 4具有良好的耐久、耐候性能。 4.1.2钢结构的防火保护可采用下列措施之一或其中几种的复(组)合: 1喷涂(抹涂)防火涂料; 2包覆防火板; 3包覆柔性毡状隔热材料; 4外包混凝土、金属网抹砂浆或砌筑砌体。 4.1.3 钢结构采用喷涂防火涂料保护时,应符合下列规定: 1室内隐蔽构件,宜选用非膨胀型防火涂料; 2设计耐火极限大于1.50h的构件,不宜选用膨胀型防火涂料; 3室外、半室外钢结构采用膨胀型防火涂料时,应选用符合环境对其性能要求的产品; 4非膨胀型防火涂料涂层的厚度不应小于10mm; 5防火涂料与防腐涂料应相容、匹配。 4.1.4钢结构采用包覆防火板保护时,应符合下列规定: 1防火板应为不燃材料,且受火时不应出现炸裂和穿透裂缝等现象; 2 防火板的包覆应根据构件形状和所处部位进行构造设计,并应采取确保安装牢固稳定的措施; 3 固定防火板的龙骨及黏结剂应为不燃材料。龙骨应便于与构件及防火板连接,黏结剂在高温下应能保持一定的强度,并应能保证防火板的包敷完整。 4.1.5 钢结构采用包覆柔性毡状隔热材料保护时,应符合下列规定: 1 不应用于易受潮或受水的钢结构; 2在自重作用下,毡状材料不应发生压缩不均的现象。 4.1.6钢结构采用外包混凝土、金属网抹砂浆或砌筑砌体保护时,应符合下列规定: 1当采用外包混凝土时,混凝土的强度等级不宜低于C20; 2当采用外包金属网抹砂浆时,砂浆的强度等级不宜低于M5;金属丝网的网格不宜大于20mm,丝径不宜小于0.6mm;砂浆最小厚度不宜小于25mm; 3当采用砌筑砌体时,砌块的强度等级不宜低于MU10。 4.2防火保护构造 4.2.1钢结构采用喷涂非膨胀型防火涂料保护时,其防火保护构造宜按图4.2.1选用。有下列情况之一时,宜在涂层内设置与钢构件相连接的镀锌铁丝网或玻璃纤维布: 1构件承受冲击、振动荷载; 2防火涂料的黏结强度不大于0.05MPa; 3构件的腹板高度大于500mm且涂层厚度不小于30mm; 4构件的腹板高度大于500mm且涂层长期暴露在室外。 (a)不加镀锌铁丝网 (b)加镀锌铁丝网 图4.2.1防火涂料保护构造图 1—钢构件;2—防火涂料;3—锌铁丝网 4.2.2钢结构采用包覆防火板保护时,钢柱的防火板保护构造宜按图4.2.2-1选用,钢梁的防火板保护构造宜按图4.2.2-2选用。 (a)圆柱包矩形防火板 (b)圆柱包圆弧形防火板 (c)靠墙圆柱包弧形防火板 (d)靠墙圆柱包矩形防火板 (e)箱形柱包圆弧形防火板 (f)靠墙箱形柱包矩形防火板 (g)独立H型柱包矩形防火板 (h)靠墙H型柱包矩形防火板 (i)独立矩形柱包矩形防火板 图4 2.2-1 防火板保护钢柱的构造图 1—钢柱;2—防火板;3—钢龙骨;4—垫块;5—自攻螺钉(射钉); 6—高温黏贴剂;7—墙体 (a)靠墙的钢梁 (b)一般位置的钢梁 图4.2.2-2 防火板保护钢梁的构造图 1—钢梁;2—防火板;3—钢龙骨;4—垫块;5—自攻螺钉(射钉); 6—高温黏贴剂;7—墙体;8—楼板;9—金属防火板 4.2.3钢结构采用包覆柔性毡状隔热材料保护时,其防火保护构造宜按图4.2.3选用。 (a)用钢龙骨支持 (b)用圆弧形防火板支撑 图4.2.3柔性毡状隔热材料防火保护构造图 1—钢柱;2—金属保护板;3—柔性毡状隔热材料;4—钢龙骨;5—高温黏贴剂; 6—支撑板;7—弧形支撑板;8—自攻螺钉(射钉) 4.2.4钢结构采用外包混凝土或砌筑砌体保护时,其防火保护构造宜按图4.2.4选用,外包混凝土宜配构造钢筋。 图4.2.4 外包混凝土防火保护构造图 1—钢构件;2—混凝土;3—构造钢筋 4.2.5钢结构采用复合防火保护时,钢柱的防火保护构造宜按图 4.2.5-1、4.2.5-2选用,钢梁的防火保护构造宜按图4.2.5-3选用。 (a)靠墙的H型柱 (b)靠墙的圆柱 (c)一般位置的箱形柱 (d)靠端的箱形柱 (e)一般位置的圆柱 图4.2.5-1钢柱采用防火涂料和防火板复合保护的构造图 1—钢柱;2—防火板;3—防火涂料;4—钢龙骨;5—支撑板;6—垫块; 7—自攻螺钉(射钉);8—高温黏贴剂;9—墙体 (a)H型钢柱 (b)一般位置的箱形柱 (c)靠墙的箱形柱 图4.2.5-2钢柱采用柔性毡和防火板复合保护的构造图 1—钢柱;2—防火板;3—柔性毡状隔热材料;4—钢龙骨;5—垫块; 6—自攻螺钉(射钉);7—高温黏贴剂;8—墙体 (a)靠墙的钢梁 (b)一般位置的钢梁 图4.2.5-3 钢梁采用防火涂料和防火板复合保护的构造图 1—钢梁;2—防火板;3—钢龙骨;4—垫块;5—自攻螺钉(射钉);6—高温黏贴剂; 7—墙体;8—楼板;9—金属防火板;10—防火涂料 5材料特性 5.1钢 材 5.1.1 高温下钢材的物理参数应按表5.1.1确定。 表5.1.1高温下钢材的物理参数 参数 符号 数值 单位 热膨胀系数 αs 1.4×10-5 m/(m·℃) 热传导系数 λs 45 W/(m·℃) 比热容 cs 600 J/(kg·℃) 密度 ρs 7850 kg/m3 5.1.2 高温下结构钢的强度设计值应按下列公式计算。 fT=ηsTf (5.1.2-1) (5.1.2-2) 式中:Ts——钢材的温度(℃); fT——高温下钢材的强度设计值(N/mm2); f——常温下钢材的强度设计值(N/mm2),应按现行国家标准《钢结构设计规范》GB 50017的规定取值; ηsT——高温下钢材的屈服强度折减系数。 5.1.3高温下结构钢的弹性模量应按下列公式计算。 EsT=χsTEs (5.1.3-1) (5.1.3-2) 式中:EsT——高温下钢材的弹性模量(N/mm2); Es——常温下钢材的弹性模量(N/mm2),应按照现行国家标准《钢结构设计规范》GB 50017的规定取值; χsT——高温下钢材的弹性模量折减系数。 5.1.4高温下耐火钢的强度可按本规范第5.1.2条式(5.1.2-1)确定。其中,屈服强度折减系数ηsT应按下式计算。 (5.1.4) 5.1.5 高温下耐火钢的弹性模量可按本规范第5.1.3条式(5.1.3-1)确定。其中,弹性模量折减系数χsT应按下式计算。 (5.1.5) 5.2混凝土 5.2.1高温下普通混凝土的热工参数应按下列规定确定: 1热膨胀系数αc应为1.8×10-5m/(m·℃),密度ρc应为2300 kg/m3; 2热传导系数λc应按下式计算: (5.2.1-1) 3比热容cc应按下式计算: (5.2.1-2) 式中:Tc——混凝土的温度(℃); λc——混凝土的热传导系数[W/(m·℃)]; cc——混凝土的比热容[J/(kg·℃)]。 5.2.2 高温下普通混凝土的轴心抗压强度、弹性模量应分别按下列公式计算确定。 fcT=ηcTfc (5.2.2-1) EcT=χcTEc (5.2.2-2) 式中:fcT——温度为Tc时混凝土的轴心抗压强度设计值(N/mm2); fc——常温下混凝土的轴心抗压强度设计值(N/mm2),应按现行国家标准《混凝土结构设计规范》GB 50010取值; EcT——高温下混凝土的弹性模量(N/mm2); Ec——常温下混凝土的弹性模量(N/mm2),应按现行国家标准《混凝土结构设计规范》GB 50010取值; ηcT——高温下混凝土的轴心抗压强度折减系数;对于强度等级低于或等于C60的混凝土,应按表5.2.2取值;其他温度下的值,可采用线性插值方法确定; χcT——高温下混凝土的弹性模量折减系数;对于强度等级低于或等于C60的混凝土,应按表5.2.2取值;其他温度下的值,可采用线性插值方法确定。 表5.2.2高温下普通混凝土的轴心抗压强度折减系数ηcT及弹性模量折减系数χcT 5.2.3高温下轻骨料混凝土的热工性能应符合下列规定确定: 1热膨胀系数αc应为0.8×10-5m/(m·℃),密度ρc应在1600 kg/m3~2300 kg/m3间取值: 2热传导系数λc应按下式计算: (5.2.3) 3比热容cc应为840 J/(kg·℃)。 5.2.4 高温下轻骨料混凝土的轴心抗压强度和弹性模量可按本规范公式(5.2.2)计算。当轻骨料混凝土的强度等级低于或等于C60时,高温下轻骨料混凝土的轴心抗压强度折减系数ηcT、弹性模量折减系数γcT可按表5.2.4确定;其他温度下的值,可采用线性插值方法确定。 表5.2.4高温下轻骨料混凝土的轴心抗压强度折减系数ηcT及弹性模量折减系数χcT 5.2.5 高温下其他类型混凝土的热工性能与力学性能,应通过试验确定。 5.3防火保护材料 5.3.1非膨胀型防火涂料的等效热传导系数,可根据标准耐火试验得到的钢试件实测升温曲线和试件的保护层厚度按下式计算: (5.3.1) 式中:λi——等效热传导系数[W/(m·℃)]; di——防火保护层的厚度(m); Fi/V——有防火保护钢试件的截面形状系数(m-1),应按本规范第6.2.2条计算; Ts0——开始时钢试件的温度,可取20℃; Ts——钢试件的平均温度(℃),取540℃; t0——钢试件的平均温度达到540℃的时间(s)。 5.3.2膨胀型防火涂料保护层的等效热阻,可根据标准耐火试验得到的钢构件实测升温曲线按下式计算: (5.3.2) 式中:Ri——防火保护层的等效热阻(对应于该防火保护层厚度)(m2·℃/W)。 5.3.3膨胀型防火涂料应给出最大使用厚度、最小使用厚度的等效热阻以及防火涂料使用厚度按最大使用厚度与最小使用厚度之差的1/4递增的等效热阻,其他厚度下的等效热阻可采用线性插值方法确定。 5.3.4其他防火保护材料的等效热阻或等效热传导系数,应通过试验确定。 6钢结构的温度计算 6.1火灾升温曲线 6.1.1 常见建筑的室内火灾升温曲线可按下列规定确定: 1 对于以纤维类物质为主的火灾,可按下式确定: Tg=Tg0=345lg(8t+1) (6.1.1-1) 2对于以烃类物质为主的火灾,可按下式确定: Tg-Tg0=1080×(1-0.325e-1/6-0.675e-2.5t) (6.1.1-2) 式中:t——火灾持续时间(min); Tg——火灾发展到t时刻的热烟气平均温度(℃); Tg0——火灾前室内环境的温度(℃),可取20℃。 6.1.2 当能准确确定建筑的火灾荷载、可燃物类型及其分布、几何特征等参数时,火灾升温曲线可按其他有可靠依据的火灾模型确定。 6.1.3当实际火灾升温曲线不同于标准火灾升温曲线时,钢结构在实际火灾作用下的等效曝火时间tc可按实际火灾升温曲线、时间轴、时刻t直线三者所围成的面积与标准火灾升温曲线、时间轴、时刻te直线三者所围成的面积相等的原则经计算确定。 6.2钢构件升温计算 6.2.1 火灾下无防火保护钢构件的温度可按下列公式计算。 (6.2.1-1) α=αc+αr (6.2.1-2) (6.2.1-3) 式中:t——火灾持续时间(s); Δt——时间步长(s),取值不宜大于5s; ΔTs——钢构件在时间(t,t+Δt)内的温升(℃); Ts、Tg——分别为t时刻钢构件的内部温度和热烟气的平均温度(℃); ρs、cs——分别为钢材的密度(kg/m3)和比热[J/(kg·℃)]; F/V——无防火保护钢构件的截面形状系数(m-1); F——单位长度钢构件的受火表面积(m2); V——单位长度钢构件的体积(m3); α——综合热传递系数[W/(m2·℃)]; αc——热对流传热系数[W/(m2·℃)],可取25 W/(m2·℃); αr——热辐射传热系数[W/(m2·℃)]; εr——综合辐射率,可按表6.2.1取值; σ——斯蒂芬-波尔兹曼常数,为5.67×10-8W/(m2·℃4)。 表6.2.1综合辐射率εr 钢构件形式 综合辐射率εr 四面受火的钢柱 0.7 钢梁 上翼缘埋于混凝土楼板内,仅下翼缘、腹板受火 0.5 混凝土楼板放置 在上翼缘 上翼缘的宽度与梁高之比大于或等于0.5 0.5 上翼缘的宽度与梁高之比小于0.5 0.7 箱梁、格构梁 0.7 6.2.2火灾下有防火保护钢构件的温度可按下式计算。 (6.2.2 1) 1 当防火保护层为非轻质防火保护层,即2ρicidiFi>ρscsV时: (6.2.2-2) 2当防火保护层为轻质防火保护层,即2ρicidiFi≤ρscsV时: 对于膨胀型防火涂料防火保护层: (6.2.2-3) 对于非膨胀型防火涂料、防火板等防火保护层: (6.2.2-4) 式中:ci——防火保护材料的比热容[J/(kg·℃)]; ρi——防火保护材料的密度(kg/m3); Ri——防火保护层的等效热阻(m2·℃/W); λi——防火保护材料的等效热传导系数[W/(m·℃)]; di——防火保护层的厚度(m); Fi/V——有防火保护钢构件的截面形状系数(m-1); Fi——有防火保护钢构件单位长度的受火表面积(m2);对于外边缘型防火保护,取单位长度钢构件的防火保护材料内表面积;对于非外边缘型防火保护,取沿单位长度钢构件所测得的可能的矩形包装的最小内表面积; V——单位长度钢构件的体积(m3)。 6.2.3在标准火灾下,采用轻质防火保护层的钢构件的温度可按下式近似计算;在非标准火灾下,计算采用轻质防火保护层的钢构件的温度时,火灾时间t应采用按本规范第6.1.3条确定的等效曝火时间te。 (6.2.3) 式中:t——火灾持续时间(s)。 7钢结构耐火验算与防火保护设计 7.1承载力法 I 基本钢构件 7.1.1 火灾下轴心受拉钢构件或轴心受压钢构件的强度应按下式验算: (7.1.1) 式中:N——火灾下钢构件的轴拉(压)力设计值; An——净截面面积; fT——高温下钢材的强度设计值,按本规范第5.1节规定确定。 7.1.2火灾下轴心受压钢构件的稳定性应按下列公式验算: (7.1.2-1) φT=αcφ (7.1.2-2) 式中:N——火灾下钢构件的轴向压力设计值; A——毛截面面积; φT——高温下轴心受压钢构件的稳定系数; φ——常温下轴心受压钢构件的稳定系数,应按现行国家标准《钢结构设计规范》GB 50017的规定确定; αc——高温下轴心受压钢构件的稳定验算参数,应根据构件长细比和构件温度按表7.1.2确定。 表7.1.2高温下轴心受压钢构件的稳定验算参数αc 构件材料 结构钢构件 耐火钢构件 温度(℃) 注:1 表中λ为构件的长细比,fy为常温下钢材强度标准值; 2温度小于或等于50℃时,αc可取1.0;温度大于50℃时,表中未规定温度时的αc应按线性插值方法确定。 7.1.3火灾下单轴受弯钢构件的强度应按下式验算: (7.1.3) 式中:M——火灾下构件的最不利截面处的弯矩设计值; Wn——钢构件最不利截面的净截面模量; γ——截面塑性发展系数。 7.1.4 火灾下单轴受弯钢构件的稳定性应按下列公式验算: (7.1.4-1) (7.1.4-2) 式中:M——火灾下构件的最大弯矩设计值; W——按受压最大纤维确定的构件毛截面模量; φbT——高温下受弯钢构件的稳定系数; φb——常温下受弯钢构件的稳定系数,应按现行国家标准《钢结构设计规范》GB 50017的规定确定;当φb>0.6时,φb不作修正; αb——高温下受弯钢构件的稳定验算参数,应按表7.1.4确定。 表7.1.4 高温下受弯钢构件的稳定验算参数αb 温度(℃) 材料 20 100 150 200 250 300 350 400 结构钢构件 1.000 0.980 0.966 0.949 0.929 0.905 0.896 0.917 耐火钢构件 1.000 0.988 0.982 0.978 0.977 0.978 0.984 0.996 温度(℃) 材料 450 500 550 600 650 700 750 800 结构钢构件 0.962 1.027 1.094 1.101 0.961 0.950 1.011 1.000 耐火钢构件 1.017 1.052 1.111 1.214 1.419 1.630 2.256 2.640 7.1.5火灾下拉弯或压弯钢构件的强度应按下式验算: (7.1.5) 式中:Mx、My——火灾下最不利截面处对应于强轴x轴和弱轴y轴的弯矩设计值; Wnx、Wny——绕x轴和y轴的净截面模量; γx、γy——绕强轴和弱轴弯曲的截面塑性发展系数。 7.1.6火灾下压弯钢构件绕强轴x轴弯曲和绕弱轴y轴弯曲时的稳定性应分别按下列公式验算: (7.1.6-1) N′ExT=π2EsTA/(1.1λ2x) (7.1.6-2) (7.1.6-3) N′EyT=π2EsTA/(1.1λ2y) (7.1.6-4) 式中: N——火灾下钢构件的轴向压力设计值; Mx、My——火灾下所计算钢构件段范围内对强轴和弱轴的最大弯矩设计值; A——毛截面面积; Wx、Wy——对强轴和弱轴按其最大受压纤维确定的毛截面模量; N′ExT、N′EyT——高温下绕强轴和弱轴弯曲的参数; λx、λy——对强轴和弱轴的长细比; φxT、φyT——高温下轴心受压钢构件对应于强轴和弱轴失稳的稳定系数,应按本规范第7.1.2条式(7.1.2-2)计算; φbxT、φbyT——高温下均匀弯曲受弯钢构件对应于强轴和弱轴失稳的稳定系数,应按本规范第7.1.4条式(7.1.4-2)计算; η——截面影响系数,对于闭口截面,取0.7;对于其他截面,取1.0; βmx、βmy——弯矩作用平面内的等效弯矩系数,应按下列规定采用(βm表示βmx、βmy): 1)框架柱和两端支承的构件: ①无横向荷载作用时:取βm=0.65+0.35M2/M1,M1和M2为端弯矩,使构件产生同向曲率(无反弯点)时取同号;使构件产生反向曲率(有反弯点)时取异号,|M1|≥|M2|; ②有端弯矩和横向荷载同时作用时:使构件产生同向曲率时,βm=1.0;使构件产生反向曲率时,βm=0.85; ③无端弯矩但有横向荷载作用时:βm=1.0。 2)悬臂构件和分析内力未考虑二阶效应的无支撑纯框架和弱支撑框架柱,βm=1.0; βtx、βty——弯矩作用平面外的等效弯矩系数,应按下列规定采用(βt表示βtx、βty): 1)在弯矩作用平面外有支承的构件,应根据两相邻支承点间构件段内的荷载和能力情况确定: ①所考虑构件段无横向荷载作用时:βt=0.65+0.35M2/M1,M1和M2为在弯矩作用平面内的端弯矩,使构件产生同向曲率(无反弯点)时取同号;使构件产生反向曲率(有反弯点)时取异号,|M1|≥|M2|; ②所考虑构件段有端弯矩和横向荷载同时作用时:使构件产生同向曲率时,βt=1.0;使构件产生反向曲率时,βt=1.0; ③所考虑构件段无端弯矩但有横向荷载作用时:βt=1.0。 2)弯矩作用平面外为悬臂的构件,βt=1.0。 II 钢框架梁、柱 7.1.7 火灾下受楼板侧向约束的钢框架梁的承载力可按下式验算: M≤fTWp (7.1.7) 式中:M——火灾下钢框架梁上荷载产生的最大弯矩设计值,不考虑温度内力; Wp——钢框架梁截面的塑性截面模量。 7.1.8火灾下钢框架柱的承载力可按下式验算: (7.1.8) 式中:N——火灾下钢框架柱所受的轴压力设计值; A——钢框架柱的毛截面面积; φT——高温下轴心受压钢构件的稳定系数,应按式(7.1.2-2)计算,其中钢框架柱计算长度应按柱子长度确定。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 | ||
版权所有: 中译悦尔(北京)翻译有限公司 2008-2040 | ||
全国免费电话:800-810-5431 电话:010-8572 5110 传真:010-8581 9515 | ||
Email: bz@bzfyw.com | |
||
本页关键词: | ||
GB 51249-2017, GB/T 51249-2017, GBT 51249-2017, GB51249-2017, GB 51249, GB51249, GB/T51249-2017, GB/T 51249, GB/T51249, GBT51249-2017, GBT 51249, GBT51249 |