![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. Explanation of Formulation This standard is prepared on the basis of deep investigation, study and summary of practical application experience of high performance concrete for sea port engineering, in combination with construction development requirements of sea port engineering, and by referring to relevant technical standards at home and abroad and absorbing new research results as well as widely soliciting opinions. It mainly includes technical contents such as raw material quality control, mix proportion control, construction process quality control and quality acceptance control of high performance concrete. Chief development organizations of this standard are CCCC Fourth Harbor Engineering Institute Co., Ltd. and CCCC Third Harbor Engineering Co., Ltd.; participating development organizations are China Communications Construction Co., Ltd., CCCC Fourth Harbor Engineering Co., Ltd., Shanghai Third Harbour Engineering Science & Technology Research Institute Co., Ltd., Tianjin Port Engineering Institute Ltd. of CCCC First Harbor Engineering Company Ltd. and CCCCC WuHan Harbour Engineering Design And Research Co., Ltd. Along with the sustainable development of our port engineering construction, the scale of sea port is increasingly expanding, the tendency to open sea and deep water is enhancing, requirements for structure durability is improved; in order to improve the technical level of sea port engineering construction and ensure project quality, Department of Water Transport of the Ministry of Transport organized to establish this standard. The provisions printed in bold type in 3.4.8 of this standard are compulsory and must be implemented strictly. This standard comprises 7 chapters, 4 annexes and explanation of provisions. The work division of drafters of this standard is as follows: 1 - General Provisions: Pan Deqiang 2 - Terms: Pan Deqiang 3 - Basic Requirements: Pan Deqiang, Wang Shengnian and Tian Junfeng 4 - Raw Materials Quality Control: Jin Jianchang, Hu Liping and Huang Junzhe 5 - Mix Proportion Control: Wang Shengnian, Huang Junzhe, Huang Xiaoheng and Zhang Guozhi 6 - Construction Process Quality Control: Luo Bidan and Hu Liping 7 - Quality Acceptance Control: Huang Junzhe, Huang Xiaoheng, Zhang Guozhi and Tian Junfeng Annex A~E: Pan Deqiang, Wang Shengnian and Huang Junzhe This standard was approved by the Ministry of Transport on September 20, 2011, issued on July 19, 2012 and shall be implemented from August 1, 2012. The Department of Water Transport of the Ministry of Transport is in charge of the administration and explanation of this standard. All relevant organizations are kindly invited to post the problems discovered in the using process and the opinions to the Department of Water Transport of the Ministry of Transport (Address: Technical Management Office of Department of Water Transport of the Ministry of Transport, No.11, Jianguomennei Street, Beijing City, 100736) and the Management Group of this standard (Address: CCCC Fourth Harbor Engineering Institute Co., Ltd., No. 157, Qianjin Road, Guangzhou City, 510230, Guangdong Province) for reference in future revision. Quality Control Standard of High Performance Concrete for Sea Port Engineering 1 General Provisions 1.0.1 For the purpose of strengthening quality control of high performance concrete for sea port engineering, realizing reliable quality, advanced technology and economic feasibility, this standard is established. 1.0.2 This standard is applicable to the quality control of high performance concrete for sea port engineering. Other high performance concrete of marine environment may also refer to the provisions of this standard. 1.0.3 For the quality control of high performance concrete for sea port engineering, necessary inspection and test equipment shall be equipped, and necessary technical management and quality control system shall be established. 1.0.4 The quality control of high performance concrete for sea port engineering shall not only comply with the requirements of this standard, but also comply with those stipulated in the current relevant ones of the nation. 2 Terms 2.0.1 high performance concrete the concrete manufactured with conventional materials and process, low water-cementations material ratio and large mixing amount of active additive under normal temperature, and it has high anti-chloride ion permeability, good dimensional stability, excellent workability and higher strength 2.0.2 cementitious material the generic term for cement or the active mineral additive of cement, fly ash, granulated blast furnace slag powder and silica fume used for preparing concrete 2.0.3 durability design of high performance concrete the process of determining relevant technical indexes and selecting various measures according to application condition in order to ensure required durability of high performance concrete 2.0.4 chloride ion diffusion coefficient the parameter representing the transmission rate of chlorine ions from high concentration area to low concentration area in concrete 2.0.5 pre-mixed cementitious material the cementitious material uniformly mixed through machine according to various portfolios of portland cement, granulated blast furnace slag powder, fly ash and silica fume 2.0.6 slump spread the extended diameter after slumping of fresh concrete mixture 2.0.7 high performance concrete workability general term of flowability, cohesiveness and water retention of high performance concrete mixture 3 Basic Requirements 3.1 General Requirements 3.1.1 For reinforced and prestressed concrete structure for sea port engineering, high performance concrete shall be adopted for splash zone and may be adopted for water level change zone and atmospheric zone as required. 3.1.2 Stable and high grade cement and additive, high-quality aggregate and high-efficiency water reducing agent matched with cement shall be selected to prepare high performance concrete. 3.2 Concrete Mixture 3.2.1 The following contents shall be inspected for high performance concrete mixture: (1) Consistence and consistence loss: (2) Chloride ion content; (3) Inspect the uniformity when concrete mix proportion, component material, mixing equipment and mixing time change. (4) Inspect air content for concrete mixture with anti-freezing requirements; (5) Inspect the temperature for concrete mixture with temperature control requirements. 3.2.2 The consistence of high performance concrete mixture shall be represented by slump or slump spread. The test method for slump shall meet the relevant requirements of the current professional standard JTJ 270 Testing Code of Concrete for Port and Waterlog Engineering. When the slump is greater than 180mm, its consistence should be represented by slump spread, and its test method shall meet the relevant requirements of Annex A. 3.2.3 Consistence loss shall be considered for high performance concrete mixture, and the slump at pouring site should not be less than 120mm. 3.2.4 The actually measured values of slump and slump spread shall meet the following requirements: (1) The permissible deviation of slump and design value is ± 20mm; (2) The permissible deviation of slump spread and design value is ± 30mm; (3) When the design value is a certain value range, the actually measured value shall meet the requirements of specified range. 3.2.5 High performance concrete mixture shall be mixed uniformly with consistent color and shall be free from any segregation and obvious bleeding phenomenon. 3.2.6 The test method for uniformity of high performance concrete mixture shall meet the requirements of the current national standard GB/T 9142 Concrete Mixers. 3.2.7 The test result for uniformity of high performance concrete mixture shall meet the following requirements: (1) The relative error of mortar density measured value in concrete is not greater than 0.8%; (2) The relative error of measured value of coarse aggregate content in unit volume concrete is not greater than 5%. 3.3 Strength Grade of High Performance Concrete 3.3.1 The strength grade of high performance concrete shall be determined according to the cube crushing strength standard value and its grade classification shall meet the requirements specified in Table 3.3.1. Table 3.3.1 Strength Grade of High Performance Concrete High performance concrete C40 C45 C50 C55 C60 C70 C80 Air-entrained high performance concrete C40 C45 C50 C55 - - - 3.3.2 The test for strength of high performance concrete shall meet the relevant requirements of the current professional standard JTJ 270 Testing Code of Concrete for Port and Waterlog Engineering. 3.3.3 For the production quality level of high performance concrete, the compressive strength standard deviation of accepted concrete may be calculated regularly in batches according to strength grade (sample quantity is not less than 25), and be divided according to those specified in Table 3.3.3; the production quality level shall achieve medium or above grade. Table 3.3.3 Concrete Production Quality Level Concrete strength class Standard deviation of concrete strength (MPa) Good Medium Relatively bad CA0~C60 ≤3.5 ≤4.5 >4.5 >C60 ≤4.5 ≤5.5 >5.5 3.4 Durability Requirements for High Performance Concrete 3.4.1 High performance concrete for sea port engineering shall be subject to durability design according to its environment and position on the building. 3.4.2 The position of concrete in marine environment on the building shall be divided meeting the requirements in Table 3.4.2. Table 3.4.2 Position Division of Concrete in Marine Environment Sheltering condition Division category Atmospheric zone Splash zone Water level change zone Underwater zone With sheltering condition According to the design water level of port engineering Design high water level plus more than 1.5m Between the lower bound of atmospheric zone and the design high water level minus 1.0m Between the lower bound of splash zone and the design low water level minus 1.0m Between the lower bound of water level change zone and the mud surface Without sheltering condition According to the design water level of port engineering Design high water level plus more than (η0+1.0m) Between the lower bound of atmospheric zone and the design high water level minus η0 Between the lower bound of splash zone and the design low water level minus 1.0m Between the lower bound of water level change zone and the mud surface According to the astronomical tide level The highest astronomical tide level plus 0.7 times more than the 100-year significant wave height H1/3 Between the lower bound of atmospheric zone and the highest astronomical tide level minus the 100-year significant wave height H1/3 Between the lower bound of splash zone and the lowest astronomical tide level minus 0.2 times the 100-year significant wave height H1/3 Between the lower bound of water level change zone and the mud surface Note: ① η0 is the wave crest surface height at H1% (the wave height when the cumulative frequency of wave train is 1%) under the conditions of the design high water level and a 50-year recurrence interval, m; ② When the calculated value of the upper bound of splash zone is less than the wharf surface elevation, the wharf surface elevation shall be taken as the upper bound of splash zone; ③ When the design water level of concrete structure for sea port engineering without sheltering condition cannot be calculated according to the relevant specifications of port engineering, the position division of concrete structure may be determined according to astronomical tide level; ④ If the member which cannot be segmented is at different positions, it shall be divided according to the position with high durability requirement. 3.4.3 The minimum thickness of concrete protective layer for steel bar in marine environment shall meet the requirements specified in Table 3.4.3. Table 3.4.3 Minimum Thickness of Concrete Protective Layer for Steel Bar in Marine EnvironmentIn: mm Building location Atmospheric zone Splash zone Water level change zone Underwater zone Northern area 50 60 50 40 Southern area 50 65 50 40 Notes: ① The thickness of concrete protective layer refers to the minimum distance between the surface of main bar and the concrete surface; ② The value in this table is the protective layer thickness of main bar when stirrup diameter is 6mm; and when stirrup diameter is greater than 6mm, the protective layer thickness shall add 5mm according to the requirements of the table; ③ For the cast-in-situ concrete members located in water level change zone and splash zone, their protective layer thickness shall add 10~15mm according to the requirements of the table; ④ For the concrete of fine or thin member like wharf slab and pile located in splash zone, its minimum protective layer thickness shall be 50mm for southern and northern areas; ⑤ Southern area refers to the area with the monthly mean temperature in the annual coldest month higher than 0℃. 3.4.4 The minimum thickness of concrete protective layer for prestressed bars in marine environment shall meet the following requirements. 3.4.4.1 Where the member thickness is larger than or equal to 0.5m, the minimum thickness of concrete protective layer shall meet the requirements specified in Table 3.4.4. Table 3.4.4 Minimum Thickness of Concrete Protective Layer for Prestressed Bar in Marine Environment In: mm Location Atmospheric zone Splash zone Water level change zone Underwater zone Protective layer thickness 65 80 65 65 ① The member thickness refers to the member size in the direction of the specified minimum thickness of protective layer; ② The thickness of protective layer for post-tensioned prestressed bar refers to the minimum distance from the wall of reserved hole to the member surface; ③ In case of manufacturing members, if special construction process or special anti-corrosive measures are adopted and it is indeed ensured about the corrosion protection of steel bars upon sufficient technical demonstration, the thickness of protective layer may not be bound by the above requirements; ④ For the prestressed bar with effective prestress less than 400 NPa, its protective layer thickness shall meet the requirements specified in 3.4.3, and should not be less than 1.5 times of the main bar diameter. 3.4.4.2 Where the member thickness is less than 0.5m, the minimum thickness of concrete protective layer for prestressed bar shall be 2.5 times of prestressed bar diameter and also shall not be less than 50mm. 3.4.5 For the plain concrete structure for preparing constructional steel bar, the thickness of concrete protective layer for constructional bar shall not be less than 40mm, and shall not be less than 2.5 times of the diameter of constructional steel bar. 3.4.6 The maximum crack width of reinforced concrete during construction period shall not exceed the limit specified in Table 3.4.6. The surface crack shall be treated according to those specified in current professional standard JTS 202 Specifications for Concrete Construction of Port and Waterway Engineering. Table 3.4.6 Maximum Crack Limit of Reinforced Concrete Member In: mm Atmospheric zone Splash zone Water level change zone Underwater zone 0.20 0.20 0.25 0.30 3.4.7 The maximum limit value of chlorine ion in high performance concrete mixture shall meet the requirements specified in Table 3.4.7, and its test method shall meet the relevant requirements of the current professional standard JTJ 270 Testing Code of Concrete for Port and Waterlog Engineering. Foreword II Explanation of Formulation III 1 General Provisions 2 Terms 3 Basic Requirements 3.1 General Requirements 3.2 Concrete Mixture 3.3 Strength Grade of High Performance Concrete 3.4 Durability Requirements for High Performance Concrete 4 Raw Materials Quality Control 4.1 General Requirements 4.2 Cement 4.3 Additive 4.4 Fine Aggregate 4.5 Coarse Aggregate 4.6 Mixing Water 4.7 Admixtures 5 Mix Proportion Control 5.1 General Requirements 5.2 Mix Proportion Design of High Performance Concrete 5.3 Mix Proportion Design of Mass High Performance Concrete 5.4 Mix Proportion Design of Anti-freezing High Performance Concrete 6 Quality Control of Construction Process 6.1 Batching 6.2 Mixing 6.3 Transportation 6.4 Pouring 6.5 Curing 6.6 Crack Control Measures for High Performance Concrete 7 Quality Acceptable Control 7.1 Appearance Quality of High Performance Concrete 7.2 High Performance Concrete Strength 7.3 High Performance Concrete Durability 7.4 Treatment for High Performance Concrete Quality Problem Annex A Slump Spread Test Method of High Performance Concrete Annex B Electromigration Test Method of Diffusion Coefficient for Resistance of Concrete to Chlorine Ion Permeability Annex C Immersion Test Method for Chloride Ion Diffusion Coefficient of Hardened Concrete Annex D Service Life Calculation of Concrete Structure Annex E Explanation of Expressions and Words in This Standard Additional Explanations 1 总 则 1.0.1 为加强海港工程高性能混凝土质量控制,做到质量可靠、技术先进和经济合理,制定本标准。 1.0.2本标准适用于海港工程高性能混凝土的质量控制。其他海水环境高性能混凝土可参照执行。 1.0.3 海港工程高性能混凝土质量控制应配备必要的检验和试验设备,建立必要的技术管理与质量控制制度。 1.0.4海港工程高性能混凝土的质量控制除应符合本标准的规定外,尚应符合国家现行有关标准的规定。 2 术 语 2.0.1 高性能混凝土high performance concrete 采用常规材料和常规工艺,在常温下,以低水胶比、大掺量活性掺合料制作的抗氯离子渗透性高、尺寸稳定性好、工作性优良并具有较高强度的混凝土。 2.0.2 胶凝材料cementitious material 用于配制混凝土的水泥或水泥与粉煤灰、粒化高炉矿渣粉、硅灰等活性矿物掺合料的总称。 2.0.3高性能混凝土耐久性设计durability design of high performance concrete 为保证高性能混凝土具有要求的耐久性能,根据使用条件,确定有关技术指标和选择各种措施的过程。 2.0.4氯离子扩散系数chloride ion diffusion coefficient 表示氯离子在混凝土中从高浓度区向低浓度区传输速率的参数。 2.0.5预拌胶凝材料pre-mixed cementitious material 由硅酸盐水泥和粒化高炉矿渣粉、粉煤灰、硅灰等按不同组合,经机械混合均匀而成的胶凝材料。 2.0.6坍落扩展度 slump spread 新拌混凝土拌合物最终坍落扩展后的直径。 2.0.7 高性能混凝土工作性high performance concrete workability 高性能混凝土拌合物流动性、粘聚性和保水性的统称。 3基本规定 3.1一般规定 3.1.1对于海港工程钢筋混凝土和预应力混凝土结构,浪溅区应采用高性能混凝土,水位变动区和大气区根据需要可采用高性能混凝土。 3.1.2配制高性能混凝土应选用质量稳定的优质水泥和掺合料、级配良好的优质骨料、与水泥匹配的高效减水剂。 3.2混凝土拌合物 3.2.1高性能混凝土拌合物应检验下列内容: (1)稠度和稠度损失; (2)氯离子含量; (3)当混凝土配合比、组成材料、搅拌设备、搅拌时间变更时,检验均匀性; (4)有抗冻要求的混凝土拌合物检验含气量; (5)有温度控制要求的混凝土拌合物检测温度。 3.2.2高性能混凝土拌合物的稠度应以坍落度或坍落扩展度表示。坍落度检测方法应符合现行行业标准《水运工程混凝土试验规程》(JTJ 270)的有关规定。当坍落度大于180mm时,其稠度宜采用坍落扩展度表示,其检测方法应符合附录A的有关规定。 3.2.3 高性能混凝土拌合物应考虑稠度损失,其在浇筑地点的坍落度不宜小于120mm。 3.2.4坍落度和坍落扩展度实测值应满足下列要求: (1)坍落度与设计值的允许偏差值为±20mm; (2)坍落扩展度与设计值的允许偏差值为±30mm; (3)当设计值为某一数值区间时,实测值满足规定区间的要求。 3.2.5 高性能混凝土拌合物应拌合均匀、颜色一致,不得有离析和明显泌水现象。 3.2.6高性能混凝土拌合物均匀性的检测方法应符合现行国家标准《混凝土搅拌机》(GB/T 9142)的有关规定。 3.2.7高性能混凝土拌合物均匀性检测结果应满足下列要求: (1)混凝土中的砂浆密度测值的相对误差不大于0.8%; (2)单位体积混凝土中粗骨料含量测值的相对误差不大于5%。 3.3高性能混凝土强度等级 3.3.1 高性能混凝土的强度等级应按立方体抗压强度标准值确定,其等级划分应符合表3.3.1的规定。 高性能混凝土强度等级 表3.3.1 高性能混凝土 C40 C45 C50 C55 C60 C70 C80 引气高性能混凝土 C40 C45 C50 C55 - - - 3.3.2 高性能混凝土的强度检测应符合现行行业标准《水运工程混凝土试验规程》(JTJ 270)的有关规定。 3.3.3 高性能混凝土生产质量水平,可按强度等级对验收合格的混凝土分批定期统计计算其样本数不少于25的抗压强度标准差,并按表3.3.3划分,生产质量水平应达到中等及以上等级。 混凝土生产质量水平 表3.3.3 混凝土强度等级 混凝土强度标准差(MPa) 优良 中等 较差 CA0~C60 ≤3.5 ≤4.5 >4.5 >C60 ≤4.5 ≤5.5 >5.5 3.4高性能混凝土耐久性要求 3.4.1海港工程高性能混凝土应根据其所处的环境、在建筑物上的部位等条件进行耐久性设计。 3.4.2海水环境混凝土在建筑物上部位的划分应符合表3.4.2的规定。 海水环境混凝土部位划分 表3.4.2 掩护条件 划分类别 大气区 浪溅区 水位变动区 水下区 有掩护条件 按港工设计水位 设计高水位加1.5m以上 大气区下界至设计高水位减1.0m之间 浪溅区下界至设计低水位减1.0m之间 水位变动区下界至泥面 无掩护条件 按港工设计水位 设计高水位加(η0+1.0m)以上 大气区下界至设计高水位减η0之间 浪溅区下界至设计低水位减1.0m之间 水位变动区下界至泥面 按天文潮潮位 最高天文潮位加0.7倍百年一遇有效波高H1/3以上 大气区下界至最高天文潮位减百年一遇有效波高H1/3之间 浪溅区下界至最低天文潮位减0.2倍百年一遇有效波高H1/3之间 水位变动区下界至泥面 注:①η0值应取设计高水位时的重现期50年H1%(波列累积频率为1%的波高)波峰面高度(m); ②当浪溅区上界计算值低于码头面高程时,应取码头面高程为浪溅区上界; ③当无掩护条件的海港工程混凝土结构无法按港工有关规范计算设计水位时,可按天文潮潮位确定混凝土结构的部位划分; ④无法分段的同一构件处于不同部位应按耐久性要求高的部位划分。 3.4.3海水环境钢筋的混凝土保护层最小厚度应符合表3.4.3的规定。 海水环境钢筋的混凝土保护层最小厚度(mm) 表3.4.3 建筑物所处地区 大气区 浪溅区 水位变动区 水下区 北方 50 60 50 40 南方 50 65 50 40 注:①混凝土保护层厚度系指主筋表面与混凝土表面的最小距离; ②表中数值系箍筋直径为6mm时主筋的保护层厚度,当箍筋直径大于6mm时,保护层厚度应按表中规定增加5mm; ③位于水位变动区、浪溅区的现浇混凝土构件,其保护层厚度应按表中规定增加10~15mm; ④位于浪溅区的码头面板、桩等细薄构件的混凝土最小保护层厚度,南、北方一律取用50mm; ⑤南方指历年最冷月月平均气温大于0℃的地区。 3.4.4 海水环境预应力筋的混凝土保护层最小厚度应符合下列规定。 3.4.4.1当构件厚度不小于0.5m时应符合表3.4.4的规定。 海水环境预应力筋的混凝土保护层最小厚度(mm) 表3.4.4 所在部位 大气区 浪溅区 水位变动区 水下区 保护层厚度 65 80 65 65 注:①构件厚度系指规定保护层最小厚度的方向上的构件尺寸; ②后张法的预应力筋保护层厚度系指预留孔道壁至构件表面的最小距离; ③制作构件时,如采取特殊施工工艺或专门防腐措施,应经充分技术论证,对钢筋的防腐蚀作用确有保证时,保护层厚度可不受上述规定的限制; ④有效预应力小于400NPa的预应力筋的保护层厚度按表3.4.3执行,但不宜小于1.5倍主筋直径。 3.4.4.2当构件厚度小于0.5m时,预应力筋的混凝土保护层最小厚度应为2.5倍预应力筋直径,但不得小于50mm。 3.4.5 配置构造钢筋的素混凝土结构,构造筋的混凝土保护层厚度不应小于40mm,且不小于2.5倍构造钢筋的直径。 3.4.6施工期钢筋混凝土最大裂缝宽度不应超过表3.4.6中所规定的限值。当出现表面裂缝时,应按现行行业标准《水运工程混凝土施工规范》(JTS 202)的有关规定进行处理。 钢筋混凝土构件最大裂缝限值(mm) 表3.4.6 大气区 浪溅区 水位变动区 水下区 0.20 0.20 0.25 0.30 3.4.7高性能混凝土拌合物的氯离子最高限值应符合表3.4.7的规定,其检测方法应符合现行行业标准《水运工程混凝土试验规程》(JTJ 270)的有关规定。 高性能混凝土拌合物中氯离子的最高限值(按胶凝材料质量百分比计) 表3.4.7 预应力混凝土 钢筋混凝土 0.06 0.10 3.4.8 高性能混凝土对所用骨料应进行碱活性检验,当检验表明骨料具有活性时严禁使用。骨料碱活性检验方法应按现行行业标准《水运工程混凝土试验规程》(JTJ 270)的有关规定执行。 3.4.9 海水环境钢筋混凝土、预应力混凝土抗氯离子渗透性指标最高限值应符合表3.4.9中电通量或扩散系数的规定,电通量检测方法应符合现行行业标准《水运工程混凝土质量控制标准》(JTS 202-2)的有关规定,扩散系数检测方法应符合附录B的有关规定。 高性能混凝土氯离子渗透性最高限值 表3.4.9 混凝土氯离子渗透性 钢筋混凝土 预应力混凝土 电通量法(C) 1000 800 扩散系数法(10-12m2/s) 4.5 4.0 注:试验用的混凝土试件,对掺加粉煤灰或粒化高炉矿渣粉的混凝土,应按标准养护条件下56d龄期的试验结果评定;其他混凝土应按标准养护条件下28d龄期的结果评定,试验应在35d内完成。 3.4.10对于设计使用年限超过50a的工程,宜按附录C规定方法测定高性能混凝土的扩散系数,并宜按附录D的规定对使用年限进行校核。 3.4.11 海港工程高性能混凝土结构的混凝土强度应同时满足承载能力和耐久性的要求,且浪溅区混凝土最低强度等级不应小于C45,其他部位不应小于C40。 3.4.12水位变动区有抗冻要求的高性能混凝土,其抗冻等级不应低于表3.4.12的规定。 混凝土抗冻等级选定标准 表3.4.12 建筑物所在地区 钢筋混凝土及预应力混凝土 严重受冻地区(最冷月月平均气温低于-8℃) F350 受冻地区(最冷月月平均气温为-4℃~-8℃) F300 微冻地区(最冷月月平均气温为0℃~-4℃) F250 注:①试验过程中试件所接触的介质应与建筑物实际接触的介质相同; ②开敞式码头和防波堤等建筑物混凝土宜选用高一级的抗冻等级或采取其他措施。 3.4.13 有抗冻要求的高性能混凝土应掺入适量引气剂,其拌合物的含气量应满足表3.4.13规定的范围。 有抗冻要求的混凝土拌合物含气量控制范围 表3.4.13 骨料最大粒径(mm) 含气量范围(%) 骨料最大粒径(mm) 含气量范围(%) 10.0 5.0~8.0 25.0 3.5~7.0 20.0 4.0~7.0 - - 3.4.14 当要求的含气量为某一定值时,其检查结果与要求值的允许偏差范围应为±1.0%。当含气量要求值为某一范围时,检测结果应满足规定范围的要求。 3.4.15 混凝土抗冻性试验方法应符合现行行业标准《水运工程混凝土试验规程》(JTJ 270)的有关规定。 3.4.16 有抗渗要求的高性能混凝土,根据最大作用水头与混凝土壁厚之比,其抗渗等级应符合表3.4.16的规定。 混凝土抗渗等级选定标准 表3.4.16 最大作用水头与混凝土壁厚之比 抗渗等级 最大作用水头与混凝土壁厚之比 抗渗等级 <5 P4 26~30 P14 5~10 P6 31~35 P16 11~15 P8 36~40 P18 16~20 P10 >40 P20 21~25 P12 - - 3.4.17混凝土抗渗性试验方法应符合现行行业标准《水运工程混凝土试验规程》(JTJ 270)的有关规定。 3.4.18按耐久性要求,海水环境高性能混凝土水胶比最大允许值浪溅区应为0.35,其他区应为0.40。 3.4.19按耐久性要求,海水环境高性能混凝土的最低胶凝材料用量浪溅区不宜小于400kg/m3,其他区不宜小于380kg/m3,且胶凝材料最高用量均不宜超过500kg/m3。 3.4.20高性能混凝土胶凝材料的组成中矿物掺合料的掺量应符合下列规定。 3.4.20.1单掺一种掺合料时掺量范围宜符合表3.4.20的规定。 单掺一种掺合料时掺量控制范围(按胶凝材料质量百分比计) 表3.4.20 组成胶凝材料的水泥品种 掺合料品种 粒化高炉矿渣粉 粉煤灰 硅灰 PI或PII型硅酸盐水泥 50~80 25~40 3~8 P0型普通硅酸盐水泥 40.70 20~35 3~8 3.4.20.2 同时掺入粉煤灰、粒化高炉矿渣粉时,其总量不宜大于胶凝材料总量的70%,其中粉煤灰掺入量不宜大于25%。 3.4.21高性能混凝土在生产控制中,可根据需要检测混凝土拌合物的水胶比和胶凝材料用量,其检测方法应符合现行行业标准《水运工程混凝土试验规程》(JTJ 270)的有关规定。 3.4.22海水环境钢筋混凝土结构的混凝土保护层垫块应符合下列规定。 3.4.22.1 垫块宜为工字形或锥形,其强度应高于构件本体混凝土,抗氯离子渗透性应满足构件本体混凝土的限值要求。 3.4.22.2 垫块可采用水胶比不大于0.35的砂浆或细石混凝土制作,也可采用耐碱性和耐老化性能好、抗压强度不小于50MPa的工程塑料制作。 3.4.22.3垫块厚度尺寸应在耐久性要求的最小保护层厚度基础上加施工允许偏差。垫块的厚度尺寸允许偏差为 mm。 4原材料质量控制 4.1一般规定 4.1.1高性能混凝土原材料中有害成分含量不得对混凝土强度、耐久性等产生不利影响。 4.1.2高性能混凝土所用的原材料应附有质量证明文件或检验报告单,使用时应按国家现行有关标准进行检验。 4.1.3材料在运输与储存过程中,应按品种、规格分别堆放,不得混杂,不得接触海水,并应防止其他污染。 4.2水 泥 4.2.1高性能混凝土宜选用标准稠度用水量低的硅酸盐水泥、普通硅酸盐水泥,其质量应符合现行国家标准《通用硅酸盐水泥》(GB 175)的有关规定。普通硅酸盐水泥和硅酸盐水泥在熟料中铝酸三钙含量宜在6%~12%范围内。高性能混凝土不宜采用矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥或复合硅酸盐水泥。 4.2.2水泥进场时,应对其品种、等级、包装或散装仓号、包重、出厂日期等进行检查验收,并应按国家现行有关标准对其质量进行复验。当因储存不当等引起质量有明显改变或水泥出厂超过3个月时,应在使用前对其质量进行复验,并按复验的结果处理。 4.2.3高性能混凝土预拌胶凝材料宜采用符合现行国家标准《通用硅酸盐水泥》(GB 175)规定的PI 52.5级水泥。 4.3掺合料 4.3.1高性能混凝土中掺加的硅灰应符合下列规定。 4.3.1.1硅灰品质应符合表4.3.1的规定。 硅灰品质指标 表4.3.1 化学性能 物理性能 SiO2含量(%) ≥90 火山灰活性指数(28d,%) ≥90 含水率(%) ≤3 细度 比表面积(m2/kg) ≥15000 烧失量(%) ≤6 需水量比 (%) ≤125 4.3.1.2硅灰进场检验应符合现行行业标准《海港工程混凝土结构防腐蚀技术规范》(JTJ 275)和《水运工程质量检验标准》(JTS 257)的有关规定。 4.3.2高性能混凝土宜使用干排法原状粉煤灰,其质量应符合下列规定。 4.3.2.1粉煤灰的质量应满足下列要求: (1)粉煤灰的质量符合表4.3.2的规定; (2)粉煤灰中CaO含量不大于10%,大于5%时需经试验证明安定性合格; (3)粉煤灰含水率不大于1%。 粉煤灰质量指标 表4.3.2 粉煤灰 等级 细度(45 μm方孔筛 筛余,%) 烧失量 (%) 需水量比 (%) SO3含量 (%) 活性指数(%) 7d 28d I ≤12 ≤5 ≤95 ≤3 ≥80 ≥90 Ⅱ ≤25 ≤8 ≤105 ≤3 ≥75 ≥85 4.3.2.2预应力高性能混凝土或浪溅区的钢筋混凝土应采用I级粉煤灰或烧失量不大于5%、需水量比不大于100%的Ⅱ级粉煤灰。 4.3.2.3 粉煤灰进场检验应符合现行行业标准《水运工程质量检验标准》(JTS 257)的有关规定。 4.3.2.4粉煤灰进场检验时,当有一项指标达不到规定要求,应从同一批中加倍取样进行复验,复验后仍不符合要求时,该批粉煤灰应作不合格品或降级处理。 4.3.3高性能混凝土中掺加的粒化高炉矿渣粉应符合下列规定。 4.3.3.1粒化高炉矿渣粉的质量应符合表4.3.3的规定。 粒化高炉矿渣粉质量指标 表4.3.3 项 目 级 别 S105 S95 密度(kg/m3) ≥2800 ≥2800 比表面积(m2/kg) ≥500 ≥400 活性指数(%) 7d ≥95 ≥75 28d ≥105 ≥95 流动度比(%) ≥95 含水率(%) ≤1.0 三氧化硫含量(%) ≤4.0 氯离子含量(%) ≤0.02 烧失量(%) ≤3.0 玻璃体含量(%) ≥85 4.3.3.2粒化高炉矿渣粉进场检验应符合现行国家标准《用于水泥和混凝土中的粒化高炉矿渣粉》(GB/T 18046)和现行行业标准《水运工程质量检验标准》(JTS 257)的有关规定。 4.4细骨料 4.4.1高性能混凝土中使用的细骨料应采用质地坚固、公称粒径在5.00mm以下的砂,其杂质含量限值应符合表4.4.1的规定。 细骨料杂质含量限值 表4.4.1 项次 项 目 有抗冻性要求 无抗冻性要求 1 总含泥量(按质量计,%) ≤2.0 ≤2.0 其中泥块含量(按质量计,%) <0.5 ≤0.5 2 云母含量(按质量计,%) <1.0 ≤2.0 3 轻物质含量(按质量计,%) ≤1.0 ≤1.0 4 硫化物及硫酸盐含量(按SO3质量计,%) ≤1.0 ≤1.0 5 有机物含量(比色法) 颜色不应深于标准色,当深于标准色时,应采用水泥胶砂法进行砂浆强度对比试验,相对抗压强度不应低于95% 注:①对所用砂的坚固性有怀疑时,应用硫酸钠法进行检验,经浸烘5次循环的失重率不应大于8%; ②轻物质是指表观密度小于2000kg/m3的物质。 4.4.2 高性能混凝土使用的细骨料宜使用细度模数为3.2~2.6的中粗砂。颗粒级配分区应符合现行行业标准《水运工程混凝土质量控制标准》(JTS 202-2)的有关规定。当砂颗粒级配不满足要求时,应采取相应的技术措施,经试验证明能确保工程质量后方可采用。 4.4.3 细骨料应采用河砂、机制砂或混合砂。 4.4.4 当采用机制砂或混合砂时,应符合现行行业标准《普通混凝土用砂、石质量及检验方法标准》(JGJ 52)的有关规定。机制砂和混合砂中石粉含量应符合表4.4.4的规定。 机制砂和混合砂中石粉含量限值 表4.4.4 混凝土强度等级 ≥C60 C55~C40 石粉含量(%) MB<1.4 ≤3.0 ≤5.0 MB≥1.4 ≤2.0 ≤3.0 注:MB为机制砂中亚甲蓝测定值。 4.4.5 细骨料的质量检验应按下列规定执行。 4.4.5.1细骨料应按现行行业标准《水运工程质量检验标准》(JTS 257)的有关规定,按批检验颗粒级配、堆积密度、含泥量、泥块含量、氯离子含量等指标。 4.4.5.2机制砂或混合砂应检验其石粉含量。 4.4.5.3已检验合格并堆放于场内或搅拌楼料仓内的细骨料,必要时应对其颗粒级配、含泥量等进行复验。 4.4.5.4采用新产源的细骨料应进行全面质量检验。 4.5粗骨料 4.5.1 粗骨料质量应符合下列规定。 4.5.1.1配制高性能混凝土应采用质地坚硬的碎石、卵石、碎石与卵石的混合物作为粗骨料,其强度可用岩石抗压强度或压碎值指标进行检验。在选择采石场、对粗骨料强度有严格要求或对质量有争议时,宜用岩石抗压强度作检验;常用的石料质量控制可用压碎指标进行检验。强度值或压碎值宜符合表4.5.1-1的规定。卵石压碎值指标宜符合表4.5.1-2的规定。 岩石抗压强度或压碎值指标 表4.5.1-1 岩石品种 混凝土强度等级 岩石的立方体抗压强度(MPa) 碎石压碎指标(%) 沉积岩 >C60 ≥100 ≤8 C60~C40 ≥80 ≤10 变质岩或 深成的火层岩 >C60 ≥120 ≤10 C60~C40 ≥100 ≤12 喷出的火成岩 >C60 ≥140 ≤11 C60~C40 ≥120 ≤13 注:沉积岩包括石灰岩、砂岩等;变质岩包括片麻岩、石英岩等;深成的火层岩包括花岗岩、正长石和橄榄岩等;喷出火成岩包括玄武岩和辉绿岩等。 卵石的压碎值指标 表4.5.1-2 混凝土强度等级 >C60 C60~C40 压碎指标(%) ≤8 ≤12 4.5.1.2卵石中软弱颗粒含量应符合表4.5.1-3的规定。 软弱颗粒的含量 表4.5.1-3 指标名称 有抗冻要求 无抗冻要求 软弱颗粒含量(按质量计,%) ≤3 ≤8 4.5.1.3粗骨料的其他物理性能宜符合表4.5.1-4的规定。 粗骨料物理性能 表4.5.1-4 指标名称 有抗冻要求 无抗冻要求 >C60 C60~C40 >C60 C60~C40 针片状颗粒含量(按质量计,%) ≤10 ≤15 ≤10 ≤15 山皮水锈颗粒含量(按质量计,%) ≤20 ≤25 颗粒密度(kg/m3) ≥2300 ≥2300 注:①针状颗粒是指颗粒的长度大于该颗粒所属粒级的平均粒径2.4倍者;片状颗粒是指颗粒的厚度小于平均粒径0.4倍者;平均粒径是指该粒径级上、下限粒径的平均值; ②山皮水锈颗粒是指风化面积超过1/4的颗粒; ③用卵石、卵石与碎石混合物配制受拉、受弯构件的混凝土时,应进行混凝土的抗拉强度试验;若试验结果不合格,则应采取相应措施提高其抗拉强度; ④对粗骨料的坚固性有怀疑时,应采用硫酸钠溶液法进行检验,经浸烘5次循环后的失重率应不大于3%。 4.5.2粗骨料的杂质含量限值应符合表4.5.2的规定。 粗骨料杂质含量限值 表4.5.2 项次 杂质名称 有抗冻要求 无抗冻要求 ≥C60 C55~C40 1 总含泥量(按质量计,%) ≤0.5 ≤0.5 ≤1.O 2 泥块含量(按质量计,%) ≤0.2 ≤0.2 ≤0.5 3 水溶性硫酸盐及硫化物含量(按质量计,%) ≤0.5 ≤1.0 4 有机物含量(比色法) 颜色不应深于标准色。当深于标准色时,应进行混凝土对比试验,其强度降低率不应大于5% 注:粗骨料中不得混入煅烧过的石灰石块、白云石块,骨料颗粒表面不宜附有粘土薄膜。 4.5.3粗骨料的最大粒径不宜大于25mm。 4.5.4粗骨料应采用连续级配,颗粒级配应符合表4.5.4的规定。 碎石或卵石的颗粒级配范围 表4.5.4 公称粒径 (mm) 累计筛余量(按质量计)(%) 方孔筛筛孔边长尺寸(mm) 2.36 4.75 9.5 16.0 19.0 26.5 5~10 95~100 80~100 0~15 0 — — 5~16 95~100 85~100 30~60 0~10 0 — 5~20 95~100 90~100 40~80 — 0~10 0 5~25 95~100 90~100 — 30~70 — 0~5 4.5.5 粗骨料进场应按现行行业标准《水运工程质量检验标准》(JTS 257)的有关规定进行检验。 4.5.6对已检验合格并堆放于场内的骨料,必要时应对其颗粒级配、含泥量等进行复验。 4.5.7采用新产源的粗骨料应进行全面质量检验。 4.6拌和用水 4.6.1 高性能混凝土拌和用水宜采用饮用水,不得使用影响水泥正常凝结、硬化和促使钢筋锈蚀的拌和水,并应符合表4.6.1中的规定。 拌和用水质量指标 表4.6.1 项 目 指标要求 项 目 指标要求 pH值 >5.0 氯化物(以Cl-计,mg/L) <200 不溶物(mg/L) <2000 硫酸盐(以SO42-计,mg/L) <600 可溶物(mg/L) <2000 — — 4.6.2高性能混凝土不得采用海水拌和。 4.6.3拌和用水的检验规则及检验方法应符合现行行业标准《混凝土用水标准》(JGJ 63)的有关规定。 4.7外加剂 4.7.1高性能混凝土应根据要求选用高效减水剂、引气剂、防冻剂等。外加剂的品质应符合国家现行标准《混凝土外加剂》(GB 8076)和《混凝土防冻剂》(JC 475)的有关规定。在所掺用的外加剂中,按胶凝材料质量百分率计的氯离子含量不宜大于0.02%。 4.7.2混凝土外加剂的应用应符合现行国家标准《混凝土外加剂应用技术规范》(GB 50119)的有关规定。 4.7.3高性能混凝土采用的高效减水剂应满足下列要求: (1)减水率不小于25%; (2)与水泥匹配; (3)配制的混凝土坍落度损失小; (4)符合现行行业标准《水运工程质量检验标准》(JTS 257)的进场检验规定。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 | ||
版权所有: 中译悦尔(北京)翻译有限公司 2008-2040 51La | ||
全国免费电话:800-810-5431 电话:010-8572 5110 传真:010-8581 9515 | ||
Email: bz@bzfyw.com | |
||
本页关键词: | ||
JTS 257-2-2012, JTS/T 257-2-2012, JTST 257-2-2012, JTS257-2-2012, JTS 257, JTS257, JTS/T257-2-2012, JTS/T 257, JTS/T257, JTST257-2-2012, JTST 257, JTST257 |