![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
1 Scope This document specifies the terms and definitions, general requirements, monitoring requirements, monitoring software, signal processing and feature extraction parameter alarms and analysis diagnostic monitoring and analysis reports for reciprocating piston compressor monitoring systems (hereinafter referred to as monitoring systems). This document applies to the monitoring system for reciprocating piston compressors. 2 Normative reference documents The contents of the following documents constitute essential provisions of this document by means of normative references in the text. Among them, the date of the reference documents, only the date of the corresponding version applies to this document; do not note the date of the reference documents, the latest version (including all the revision of the list) applies to this document. GB 3836.1 Explosive atmospheres Part 1: General requirements for equipment GB/T 20921 Glossary of machine condition monitoring and diagnosis 3 Terms and definitions The terms defined by GB/T 20921 and the following terms and definitions apply to this document. 3.1 Reciprocating piston compressor monitoring Through data acquisition equipment, the reciprocating compressor key phase, vibration, offset, temperature, pressure and other signals are collected online or offline, and after a series of data processing such as filtering, amplification, feature extraction, etc., the operating state characteristics of the reciprocating compressor parameters are obtained and stored in the data processing and storage equipment to achieve the monitoring and analysis of the operating state of the reciprocating compressor. 3.2 The whole eycle data acquisition The data acquisition is carried out in accordance with the cyclic operation of the reciprocating piston compressor. The length of the data corresponds to one or more operating cycles of the reciprocating piston compressor. 3.3 Key phase monitoring The crank angle of the reciprocating piston compressor is monitored by means of a metal block or key phase groove on the crankshaft or flywheel of the reciprocating piston compressor and the reference orientation signal of the piston position of each cylinder. 3.4 Synchronous data acquisition of all channels Synchronous data acquisition of all channels of a single or multiple data acquisition device in accordance with a unified command. 3.5 Continuous data acquisition Continuous data acquisition according to a certain sampling rate for monitoring the vibration, offset, speed and other signals of the continuous working cycle of a reciprocating piston press. 3.6 Interval data acquisition Data acquisition is carried out according to a certain sampling rate and a fixed interval time to achieve single or multiple working cycles of the reciprocating piston compressor during the interval time. Monitoring of signals such as rotational speed. 3.7 Piston rod displacement deviation monitoring Piston rod displacement deviation monitring An eddy current sensor is installed in a direction perpendicular to the central axis of the piston rod to monitor the displacement signal during the movement of the piston rod. 3.8 Piston rod axes orbit monitoring By means of eddy current sensors for monitoring the offset of the piston rod, the offset signals are monitored in two directions perpendicular to the central axis of the piston rod and at an angle of 90°, and the trajectory of the geometric centre of the piston rod in several cross-sections is calculated. The vibration signal of the outer casing of the cylinder is monitored by an acceleration sensor in the axial, horizontal and vertical radial directions. 4 General requirements 4.1 In addition to the equipment and measurement methods specified in this document, the use of other equipment and measurement methods of equal or greater accuracy is not excluded. All tests that affect the acquisition of signals. Measuring and processing equipment and devices shall be calibrated periodically or prior to use against equipment that has been calibrated to the appropriate national standards. 4.2 Monitoring systems may be selected but are not limited to key phase, crosshead slide housing vibration. Crankcase vibration, piston rod deflection. Intake valve cavity temperature, exhaust valve cavity humidity, cylinder vibration, cylinder dynamic pressure, intake and exhaust temperature, intake and exhaust pressure and other signal monitoring. 4.3 All types of sensors should be safe, accurate and reliable, and their installation should not adversely affect the normal operation of the unit. 4.4 The selection and installation of all electrical equipment, instruments, components and materials shall apply to the specified electrical hazardous location classification and comply with the requirements of GB 3836.1. 4.5 The signal circuit between the sensor and the data acquisition equipment should be correctly and reliably connected, and the signal circuit commissioning and general judgement of the data should be referred to in Appendix A. 4.6 Data acquisition equipment should have third-party accuracy and reliability test certification materials, including but not limited to high and low temperature working test high and low temperature storage test. Electromagnetic compatibility test, reliability test, vibration test, etc. 4.7 The monitoring system shall meet with the DCS system ERP system, gas volume stepless adjustment system . Equipment management platform for state control signals and monitoring data interaction needs, at the same time should not cause adverse effects on the normal operation of the above systems. 5 Monitoring requirements 5.1 Layout of sensor measurement points 5.1.1 The configuration, installation and layout of the sensor measurement points of the monitoring system can be found in Appendix B and Appendix C. 5.1.2 The number of sensor measurement points depends on the size of the unit, the mechanical structure and the number of cylinders and valves, and should be configured reasonably and effectively according to the structural characteristics and characteristics of the reciprocating piston compressor. 5.1.3 The monitoring category, sensor installation position sensor selection, signal acquisition mode and whether the alarm is appropriate according to the provisions of Table 1. 5.2 Sensor installation requirements 5.2.1 paste, magnetic adsorption, thread fixing welding and other installation methods should ensure the strength and reliability of the sensor and other equipment installation, should not occur off, loosening and other failures. 5.2.2 The installation of the monitoring sensor shall not affect the support rigidity of the unit and the sealing of the high pressure gas. 5.2.3 The installation position of the monitoring sensor shall be reasonably selected according to the structure of the unit, monitoring needs and user requirements. 5.2.4 For units with horizontal cylinder layout, the installation angle of the live distress rod offset sensor should include two directions: vertical and horizontal; for units with vertical cylinder layout, the installation angle of the piston rod offset sensor should include two directions perpendicular to the axis of the piston rod and with an angle of 90". 6 Monitoring software 6.1 Monitoring software shall include but not limited to data acquisition software, data communication software. Data management software. Fault alarm software. Data analysis and diagnosis software database software. 6.2 The monitoring software shall have a complete data communication interface function and can communicate with the DCS system, ERP system, gas volume stepless adjustment system, equipment management platform for data communication. 6.3 The monitoring software should be able to configure the measurement point configuration, configure and set the measurement point name, measurement point position number. Measurement point sampling rate, measurement point sampling points, measurement point sensor type, measurement point installation location, channel filtering parameters, alarm threshold value, and allow modification. 6.4 The monitoring software should support continuous data acquisition and interval data acquisition mode, and can modify the data acquisition mode to ensure that the refresh rate of each group of real-time data does not exceed 5 s. For fast-changing transient fault signals, continuous whole-cycle data acquisition and storage of all measurement points can be carried out automatically. 6.5 The monitoring software should be able to match database information according to the specific configuration of the measurement points, and to choose whether to carry out alarms and store data. 6.6 The monitoring software should be able to modify the alarm mode of each measurement point, including but not limited to over-the-line alarm, slow-change trend alarm, fast-change trend alarm; it should have a variety of alarm display methods such as sound and light alarm, SMS alarm and email alarm; it should have the ability to optimize the alarm strategy when the data repeatedly crosses the alarm line and not to repeat the alarm. 6.7 The visual analysis and diagnosis function of the monitoring software should be in accordance with the provisions of Table 3. 7 Signal processing and feature extraction 7.1 The monitoring system should be based on the key signal, complete crosshead slide housing vibration. Crankcase vibration, piston rod deflection, cylinder vibration, cylinder dynamic pressure and other signal processing and feature extraction. 7.2 The acceleration vibration signals such as crosshead slide housing vibration and cylinder vibration shall be extracted from the whole cycle acceleration vibration peak, crank rotation angle 0°~360° segment acceleration vibration peak. Frequency characteristics and other parameters. 7.3 The crankcase vibration measurement point signal should be extracted from the whole cycle of vibration velocity RMS frequency characteristics and other parameters. 7.4 The piston rod offset measurement point signal should extract the average value of the whole cycle piston rod offset, the peak value of the whole cycle offset, the peak value of the segmental offset of the crank angle 0°~360°, the characteristics of the face rate and other parameters. 7.5 The cylinder dynamic pressure measurement point signal should be extracted from the pressure average, pressure maximum, pressure change rate and other parameters. 7.6 Signal acquisition and processing mode in the normal state can be used interval data acquisition, in the case of fault and alarm should be used continuous whole cycle data acquisition, and to achieve the unit monitoring data automatically encrypted storage. 7.7 The calculation methods of the above-mentioned characteristic parameters can be referred to GB/T 19873.1, GB/T 19873.2, GB/T 23714 and GB/T 25742.1, and the calculation methods of the key characteristic parameters can be found in Appendix D. 8 Parameter alarms and analysis and diagnosis 8.1 Alarm values for the various monitoring parameters are generally set according to national standards or recommended limits by the compressor manufacturer. 8.2 If there is no corresponding national standard or compressor manufacturer's recommended limit value for the monitoring parameter, it can be set according to the historical normal and fault operation data of the unit, i.e. set the corresponding magnification Y according to the size of different parameter characteristic values in the fault state of the unit, and take the size of different parameter characteristic values in the normal state of the unit multiplied by Y as the alarm limit value of this monitoring parameter characteristic value. The magnification factor Y shall be selected according to the operating load of the unit by means of data self-learning or manual setting. 8.3 The time, frequency and angular signal characteristics of the monitored parameters of the reciprocating piston compressor shall be analysed by means of various analysis plots in the online monitoring software, and the analysis and diagnosis shall be carried out against the fault mechanism and the change in fault characteristics. 8.4 The analysis and diagnosis process can be completed manually or through the automatic diagnosis function of the fault drop, and the automatic diagnosis results can provide reference for the manual analysis and diagnosis. 8.5 The fault analysis and diagnosis process can be referred to GB/T 22393, GB/T 22394.1 and GB/T 23713.1. See Appendix E for the correspondence between common faults and characteristics. 9 Monitoring and analysis report 9.1 Monitoring and analysis reports can be generated automatically by the monitoring software or written manually by guanxi. Appendix A (informative) Normal range of monitoring signals Appendix B (informative) Common sensor point configurations Appendix C (informative) Commonly used sensor point installation layout options Appendix D (Informative) Calculation method for monitoring characteristic parameters Appendix E (informative) Comparison table of common fault monitoring characteristics Appendix F (Informative) Monitoring Analysis Report Template References Foreword 1 Scope 2 Normative reference documents 3 Terms and definitions 4 General requirements 5 Monitoring requirements 6 Monitoring software 7 Signal processing and feature extraction 8 Parameter alarms and analysis and diagnosis 9 Monitoring and analysis report Appendix A (informative) Normal range of monitoring signals Appendix B (informative) Common sensor point configurations Appendix C (informative) Commonly used sensor point installation layout options Appendix D (Informative) Calculation method for monitoring characteristic parameters Appendix E (informative) Comparison table of common fault monitoring characteristics Appendix F (Informative) Monitoring Analysis Report Template References 1范围 本文件规定了往复活塞压缩机监测系统(以下简称监测系统)的术语和定义、通用要求、监测要求、监测软件、信号处理与特征提取参数报警与分析诊断监测分析报告。 本文件适用于往复活塞压缩机的监测系统。 2规范性引用文件 下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 3836.1爆炸性环境第1部分:设备通用要求 GB/T 20921机器状态监测与诊断词汇 3术语和定义 GB/T 20921界定的以及下列术语和定义适用于本文件。 3.1 往复活塞压缩机监测reciprocating compressor monitoring 通过数据采集设备,采用在线、离线等方式采集往复活塞压缩机键相、振动、偏移、温度、压力等信号,经过滤波、放大、特征提取等一系列数据处理,获得往复活塞压缩机运行状态特征参数,存储于数据处理与存储设备,实现往复活塞压缩机运行状态的监测、分析。 3.2 整周期数据采集the whole eycle data acquisition 按照往复活塞压缩机周期性工作进行数据采集,数据的长度对应-个或多个往复活塞压縮机工作循环。 3.3 键相监测key phase monitoring 通过在往复活塞压缩机曲轴或飞轮上粘贴金属块或加工键相槽,监测往复活塞压缩机曲柄转角和各缸活塞位置的基准方位信号。 3.4 全通道同步数据采集synchronous data acquisition of all channels 单个或多个数据采集设备的所有采集通道按照统-指令同步完成数据采集. 3.5 连续数据采集continuous data acquisition 按照某个采样率,连续不遗漏地进行数据采集,实现往复活塞压编机连续工作循环振动、偏移、转速等信号的监测。 3.6 间隔数据采集interval data acquisition 按照某个采样率和固定的间隔时间,进行数据采集,实现间隔时间段内往复活塞压缩机单个或多个工作循环振动偏移.转速等信号的监测。 3.7 活塞杆偏移监测 Piston rod displacement deviation monitring 在与活塞杆中心轴线垂直的方向上安装电涡流传感器,监测活塞杆运动过程中的偏移信号。 3.8 活塞杆轴心轨迹监测piston rod axes orbit monitoring 通过监测活寨杆偏移的电涡流传感器,监测与活塞杆中心轴线垂直且夹角为90°的两个方向的偏移信号,计算获得活塞杆多个截面几何中心的运动轨迹。 通过加速度传感器监测气缸外壳体轴向水平径向、垂直径向振动信号。 4通用要求 4.1除本文件规定的没备及测量方法外,不排斥使用其他同等精度或更高精度的设备及测量方法。所有会影响信号采集的检验.测量、处理设备及装置,均应定期或在使用前对照巳检定的符合相应国家标准的设备进行校验。 4.2监测系统可选择但不限于键相、十字头滑道外壳振动.曲轴箱振动、活塞杆偏移.进气阀阀腔温度、排气阀阀腔湿度、气缸振动、气缸动态压力、进排气温度、进排气压力等信号的监测。 4.3各类传感器应安全、准确、可靠,且其安装不应对机组正常运行造成不良影响。 4.4所有电气设备、仪表、元件及材料的选择与安装都应适用于规定的电气危险场所分类,并符合GB 3836.1的要求。 4.5传感器至数据采集设备之间的信号回路应保证连接正确、可靠,信号回路调试与数据一般性判断参见附录A的规定。 4.6数据采集设备应具备第三方准确性、可靠性测试证明材料,包括但不限于高低温工作试验高低温贮存试验.电磁兼容性试验、可靠性试验、振动试验等。 4.7监测系统应满足与DCS系统ERP系统、气量无级调节系统.设备管理平台进行状态控制信号和监测数据交互的需求,同时不应对上述系统的正常运行造成不良影响。 5监测要求 5.1传感器测点布局 5.1.1监测系统传感器测点的配置、安装及布置方案参见附录B与附录C. 5.1.2传感器测点数量取决于机组大小、机械结构及气缸、气阀数量,且应根据往复活塞压缩机的结构特点和特性参数进行合理有效配置。 5.1.3监测类别、传感器安装位置传感器选择、信号采集方式及是否报警宜按表1的规定。 5.2传感器安装要求 5.2.1粘贴、磁力吸附、螺纹固定焊接等各种安装方式均应保证传感器及其他设备安装的强度与可靠性,不应发生脱落、松动等故障。 5.2.2监测传感器安装不应影响机组的支撑刚度和高压气体的密封性。 5.2.3监测传感器安装位置应根据机组结构、监测需求及用户要求进行合理选择。 5.2.4气缸卧式布局的机组,活窘杆偏移传感器安装角度宜包括竖直与水平两个方向;气缸立式布局的机组,活塞杆偏移传感器安装角度宜包括与活塞杆轴线垂直且夹角为90"的两个方向。 6监测软件 6.1监测软件应包括但不限于数据采集软件、数据通信软件.数据管理软件.故障报警软件.数据分析诊断软件数据库软件。 6.2监测软件应具备完整的数据通信接口功能,并可与DCS系统、ERP系统、气量无级调节系统、设备管理平台进行数据通信。 6.3监测软件应可进行测点组态,配置设定测点名称、测点位号.测点采样率、测点采样点数、测点传感器类型、测点安装位置、通道滤波参数、报警门限值,并允许修改。 6.4监测软件应支持连续数据采集和间隔数据采集模式,并可修改数据采集模式,保证每组实时数据的刷新速率不超过5s.对于快速变化的瞬态故障信号,可自动进行所有测点的连续整周期数据采集和存储。 6.5监测软件应可根据具体的测点配置进行数据库信息匹配,并可选择是否进行报警和存储数据。 6.6监测软件宜可修改各测点报警方式,包括但不限于过线报警、缓变趋势报瞽、快变趋势报警;宜具备声光报警、短信报警、邮件报警等多种报警展示方式;宜具备在数据反复穿越报警线时进行报警策略优化,不重复报警的能力。 6.7监测软件可视化分析诊断功能宜按表3的规定。 7信号处理与特征提取 7.1监测系统应基于键相信号,完成十字头滑道外壳振动.曲轴箱振动、活塞杆偏移、气缸振动、气缸动态压力等信号的处理和特征提取。 7.2十字头滑道外壳振动气缸振动等加速度振动信号应提取整周期加速度振动峰值、曲柄转角0°~360°分段加速度振动峰值.频率特征等参数。 7.3曲轴箱振动测点信号应提取整周期振动速度有效值频率特征等参数。 7.4活骞杆偏移测点信号应提取整周期活塞杆偏移平均值、整周期偏移峰峰值、曲柄转角0°~360°分段偏移峰峰值、颜率特征等参数。 7.5气缸动态压力测点信号应提取压力平均值、压力最大值、压力变化率等参数。 7.6信号采集与处理的方式在正常状态下可采用间隔数据采集,在故障和报警情况下宜采用连续整周期数据采集,并实现机组监测数据自动加密存储。 7.7.上述特征参数的计算方法可参考GB/T 19873.1,GB/T 19873.2、GB/T 23714与GB/T 25742.1,关健特征参数计算方法参见附录D. 8参数报警与分析诊断 8.1各类监测参数报警值--般按国家标准或压缩机制造商推荐限值进行设定。 8.2监测参数若无相应国家标准或压缩机制造商推荐限值参考,可根据机组历史正常与故障运行数据进行设置,即根据机组故障状态下不同参数特征值大小,设置相应的放大倍数Y,取机组正常状态下不同参数特征值大小乘以Y,作为该监测参数特征值报警限值。放大倍数Y应根据机组运行负荷,采用数据自学习或人工设定等方式进行选择。 8.3应通过在线监测软件的各类分析图谱,对往复活塞压缩机监测参数的时城、频域、角城信号特征进行分析,对照故障机理和故障特征变化规律,进行分析诊断。 8.4分析诊断过程可通过人工完成,也可通过故降自动诊断功能完成,自动诊断结果可为人工分析诊断提供参考。 8.5故障分析诊断过程可参考GB/T 22393、GB/T 22394.1与GB/T 23713.1。常见故障与特征对应关系参见附录E. 9监测分析报告 9.1监测分析报告可由监测软件自动生成或由人工掼写完成。 附录A(资料性)监测信号正常范围 附录B(资料性)常用传感器测点配置方案 附录C(资料性)常用传感器测点安装布置方案 附录D(资料性)监测特征参数计算方法 附录E(资料性)常见故障监测特征对照表 附录F(资料性)监测分析报告模板 参考文献
|
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB/T 41099-2021, GB 41099-2021, GBT 41099-2021, GB/T41099-2021, GB/T 41099, GB/T41099, GB41099-2021, GB 41099, GB41099, GBT41099-2021, GBT 41099, GBT41099 |