![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This standard is revised from GB 50761-2012 Code for seismic design of petrochemical steel facilities by SINOPEC Engineering Incorporation jointly with organizations concerned according to the requirements of Notice on printing and distributing the development and revision plan on engineering construction standards and codes in 2015 (JIANBIAO [2014] No. 189) issued by the Ministry of Housing and Urban-Rural Development. During the revision, the drafting group has adopted the results of special studies completed in recent years, researched and summarized the experiences and lessons of major earthquakes at home and abroad, extensively solicited opinions from relevant survey, design and construction organizations throughout the country, and finalized this standard through repeated discussion, modification and trial design. This standard consists of 11 clauses and 4 annexes, covering: general provisions, terms and symbols, basic requirements, seismic action and seismic checking, horizontal equipment, vertical equipment supported by legs, vertical equipment supported by lugs, vertical equipment supported by skirt, spherical tanks, vertical cylindrical tanks and heater, etc. The main revisions are as follows: 1. The slope of the seismic design response spectrum in the linear descending segment is adjusted. 2. The classification of equipment seismic importance is improved. 3. The adjustment coefficient of seismic action is simplified. 4. The calculation method for horizontal seismic action of equipment installed on frame is supplemented and improved. 5. The damping ratios of vertical cylindrical tank and vertical equipment supported by legs are adjusted according to the completed study subjects. 6. The relevant clauses and texts are modified according to the feedback opinions and suggestions on the exposure draft of this standard. For the purposes of this standard, the Ministry of Housing and Urban-Rural Development is in charge of the administration, China Petrochemical Corporation is in charge of routine management and SINOPEC Engineering Incorporation is responsible for the explanation of specific technical contents. In case of any comment or suggestion during the implementing of this standard, please send it to the management group of Standard for seismic design of petrochemical steel equipments of SINOPEC Engineering Incorporation (Address: No. 21, Anyuan, Anhuibeili, Chaoyang District, Beijing; 100101) for future reference. Standard for seismic design of petrochemical steel equipments 1 General provisions 1.0.1 This standard is prepared with a view to implementing the national laws and regulations on earthquake prevention and disaster mitigation, executing the prevention first policy and reducing the earthquake damage and economic loss of petrochemical equipment after taking seismic fortification measures. 1.0.2 This standard is applicable to the seismic design of steel equipment such as horizontal equipment, vertical equipment supported by legs, vertical equipment supported by lugs, vertical equipment supported by skirt, spherical tanks, vertical cylindrical tanks and heaters for petrochemical purpose in the region with a design basic acceleration of ground motion not greater than 0.40g or with Seismic Fortification Intensity 9 or below. 1.0.3 For petrochemical equipment subjected to seismic design according to this standard, where suffering earthquake of corresponding seismic fortification intensity in this region, the body, supporting members anchorage structure shall not be damaged. 1.0.4 The design parameters of ground motion or seismic fortification intensity shall be determined according to relevant requirements of current national standard GB 18306 Seismic ground motion parameters zonation map of China; for project site for which seismic safety evaluation has been completed, seismic fortification shall be carried out according to the approved design parameters of ground motion or seismic fortification intensity. 1.0.5 The seismic design of petrochemical steel equipment shall not only meet the requirements of this standard, but also meet those of current national standards. 2 Terms and symbols 2.1 Terms 2.1.1 seismic design specialized design for equipment that requires seismic fortification, including seismic calculation and seismic fortification measures 2.1.2 seismic fortification intensity seismic intensity which is approved according to the authority specified by the nation as the criterion of seismic fortification of one area. 2.1.3 seismic action dynamic action of equipment caused by ground motion, including horizontal seismic action and vertical seismic action 2.1.4 seismic effect internal force or deformation generated by the equipment under seismic action 2.1.5 design parameters of ground motion seismic acceleration time-history curve, acceleration response spectrum and peak acceleration used for seismic design 2.1.6 design basic acceleration of ground motion design value of seismic acceleration with exceeding probability of 10% during the 50-year design reference period 2.1.7 characteristic period of ground motion periodic value corresponding to the start point of descending segment reflecting such factors as earthquake magnitude, epicentral distance and site category in the seismic influence coefficient curve used for seismic design 2.1.8 seismic influence coefficient statistical average ratio of the maximum acceleration response to the gravity acceleration of single-mass-point elastic system under seismic action 2.1.9 seismic fortification measures seismic design content excluding seismic action calculation and resistance calculation and including basic requirements of seismic design and details of seismic design 2.1.10 details of seismic design various detail requirements which must be taken for structural and non-structural parts generally without calculation according to seismic concept design principle 2.1.11 body equipment shell or heater frame structure 2.1.12 allowable stress design design method following the principle that the calculated section stress of an element under the design load does not exceed the allowable stress of the material 2.1.13 limits state design engineering structural design method following the principle that a structure or member meets the certain predetermined functional requirement 2.2 Symbols 2.2.1 Actions and effects Fh——the design value of total horizontal seismic action of equipment; Fv——the design value of total vertical seismic action at the equipment bottom; Fhi——the design value of horizontal seismic action acting on the mass point i; Fhji——the design value of horizontal seismic action at the mass point i in the j-th vibration mode; Fvi——the design value of vertical seismic action at the mass point i; Fhk——the design value of horizontal seismic action on the on-frame equipment; meq——the equivalent total mass of the equipment; mi, mj——the mass respectively focusing on the mass points i and j; meqv——the vertical equivalent mass of equipment; mi——the mass focusing on mass point i; mj——the mass focusing on mass point j; Sj——the effect generated by horizontal seismic action in the j-th vibration mode; Sh——the horizontal seismic effect; Xji——the relative horizontal displacement of the mass point i in the j-th vibration mode. 2.2.2 Material performance and resistance: Et——the elasticity modulus of material at design temperature; Rel——the yield strength of material; σ——the stress value under the action of load combination; [σ]——the allowable seismic stress of material; [σ]t——the allowable stress of material at design temperature; [σ]b——the allowable seismic tensile stress of material; [σ]bc——the allowable seismic compressive stress of material; τ——the shear stress value under the action of load combination; [τ]——the allowable seismic shear stress of material; [τ]b——the allowable seismic shear stress of material. 2.2.3 Calculation coefficients: α1——the horizontal seismic influence coefficient corresponding to the basic natural vibration period of equipment or structure; αj——the horizontal seismic influence coefficient corresponding to the basic natural vibration period of equipment in the j-th vibration mode; αmax——the maximum horizontal seismic influence coefficient; αvmax——the maximum vertical seismic influence coefficient; φ——the welded joint coefficient; KL——the adjustment coefficient of allowable seismic stress; Km——the amplification coefficient of seismic action of on-frame equipment; ζ——the damping ratio of equipment; η——the seismic importance coefficient of equipment; RE——the adjustment coefficient of seismic action of equipment; η1——the adjustment coefficient of descending slope of linear descending segment; η2——the damping adjustment coefficient; γ——the attenuation index of curve descending segment; γj——the participation coefficient of the j-th vibration mode; δ——the bending deformation influence index; λm——the equivalent mass coefficient; k——the calculation coefficient. 2.2.4 Others: hi, hj——the calculated height of mass points i and j respectively; T, T1——the basic natural vibration period of equipment or structure; Tg——the characteristic period of ground motion; n——the number of mass points; λ——the slenderness ratio; λc——the critical slenderness ratio; lk——the calculated length; ——the inertia radius; δe——the effective thickness of section. 3 Basic requirements 3.1 Classification of seismic importance of equipment 3.1.1 During seismic design, the seismic importance of equipment shall be classified into the following four categories according to the equipment purpose and the earthquake damage degree: 1 Category I: equipment other than those of Categories II, III and IV. 2 Category II: Category II pressure vessels specified in the technical specification for safety of special equipment, i.e., TSG 21 Supervision regulation on safety technology for stationary pressure vessel, Category II tanks classified according to current professional standard AQ 3053 Safety technical code for vertical cylindrical steel welded tank, as well as heater and vertical equipment with a height of 20~80m. 3 Category III: Category III pressure vessels specified in the technical specification for safety of special equipment, i.e., TSG 21 Supervision regulation on safety technology for stationary pressure vessel, Category III tanks classified according to current professional standard AQ 3053 Safety technical code for vertical cylindrical steel welded tank, and vertical equipment supported by skirt with a height above 80m. 4 Category IV: equipment used for fire protection. 3.1.2 During seismic design, the seismic importance of equipment shall be selected based on the seismic importance of equipment according to Table 3.1.2. Table 3.1.2 Importance coefficient Seismic importance category of equipment Category I Category II Category III Category IV Importance coefficient η 0.90 1.00 1.10 1.20 3.2 Seismic influences 3.2.1 The design basic acceleration of ground motion and characteristic period of ground motion corresponding to the seismic fortification intensity shall be adopted for the characterization of seismic influences suffered by the equipment location, except the heater. 3.2.2 See Table 3.2.2 for the correspondence between design basic acceleration of ground motion and seismic fortification intensity. Table 3 Correspondence between design basic acceleration of ground motion and seismic fortification intensity Design basic acceleration of ground motion 0.05g 0.10g 0.15g 0.20g 0.30g 0.40g Seismic fortification intensity 6 7 8 9 Note: g is the gravity acceleration. 3.2.3 The characteristic period of ground motion of seismic influence shall be determined according to the design earthquake group and site category of the equipment location. The design earthquakes are classified into three groups, with characteristic periods of ground motion adopted according to the Table 3.2.3. Table 3.2 Characteristic periods of ground motion Design earthquake group Site category I0 I1 II Ⅲ IV Group I 0.20 0.25 0.35 0.45 0.65 Group II 0.25 0.30 0.40 0.55 0.75 Group III 0.30 0.35 0.45 0.65 0.90 3.2.4 The seismic fortification intensity, design basic acceleration of ground motion and design earthquake group for central areas of main cities and towns in China may be selected according to the relevant requirements of current national standard GB 50011 Code for seismic design of buildings. 3.3 Equipment system design 3.3.1 The equipment system shall meet the following requirements: 1 Under the premise of meeting process requirements, the equipment should be arranged outdoors; 2 The equipment shall be provided with reasonable seismic action transmission path; 3 Failure of whole equipment and loss of seismic capacity due to failure of parts and components or accessory members of equipment shall be avoided; 4 For the weak parts of the accessory equipment attached to the body, measures improving the seismic resistance shall be taken; 5 The change in stiffness and mass of equipment should be gentle, and mass centers of internals and the whole equipment should be arranged at a low level; 6 Vertical equipment supported by skirt with a height-diameter ratio greater than 10 or a height greater than 10m should have a bolted structure; 7 External pipeline connected to the equipment shall be able to adapt to the displacement of the connection point between pipeline and equipment during an earthquake. 3.3.2 The materials of accessory members shall meet the following requirements: 1 The ratio of yield strength to tensile strength of the materials shall not be greater than 0.85; 2 The elongation of supporting member materials shall not be less than 15%; 3 Materials to be welded shall have a good weldability and an impact toughness meeting the design requirements; 4 Under low temperature conditions, the influence of degradation in impact toughness of materials caused by low temperature shall be considered. 4 Seismic action and seismic checking 4.1 General requirements 4.1.1 The seismic action and seismic checking of equipment shall meet the following requirements: 1 The horizontal seismic action shall be calculated and seismic checking be carried out; 2 Where the design basic acceleration of ground motion is 0.20~0.40g or the seismic fortification intensity is Intensity 8 or 9, the vertical seismic action shall be calculated and seismic checking be carried out for the horizontal equipment with diameter greater than 4m and the spacing between two supports greater than 20m as well as the vertical equipment and floor chimney of heater with height greater than 20m; 3 The seismic amplification action of the frame where the equipment is located in shall be considered for the equipment installed on frame. 4.1.2 Where the design basic acceleration of ground motion is 0.05g or the seismic fortification intensity is Intensity 6, Categories I and II equipment may not be subjected to seismic action calculation, but shall meet the requirements of seismic fortification measures. 4.1.3 The following methods should be adopted for seismic action calculation of equipment: 1 Bottom shear method may be adopted for the following equipment: 1) vertical equipment with height not greater than 10m; 2) vertical equipment with height-diameter ratio less than 5 and uniform distribution of mass and stiffness along the height; 3) equipment that may be simplified as a single-mass-point system. 2 Mode-superposition response spectrum method should be adopted for the equipment except those listed in Item 1. 3 Where the design basic acceleration of ground motion is greater than or equal to 0.30g, time-history analysis method should be adopted for supplementary calculations of the vertical equipment with height greater than 120m and height-diameter ratio greater than 25 as well as vertical cylindrical tank with volume greater than 15×104m3. 4.1.4 Where time-history analysis method is adopted, at least two groups of actual strong-motion acceleration records and a group of artificially simulated seismic acceleration time history curves shall be selected according to the equipment site category and design earthquake group, the average seismic influence coefficient curve shall be statistically consistent with the seismic influence coefficient curve used in the mode-superposition response spectrum method, and the maximum acceleration time history may be adopted according to Table 4.1.4. Table 4.1.4 Maximum seismic acceleration time history for time history analysis (cm/s2) Seismic influence Design basic acceleration of ground motion 0.05g 0.10g 0.15g 0.20g 0.30g 0.40g Frequent earthquake 18 35 55 70 110 140 Moderate earthquake 50 100 150 200 300 400 Rare earthquake 125 220 310 400 510 620 Where time-history analysis method is adopted, the bottom shear of equipment calculated by each time-history curve shall not be less than 65% of the calculation result obtained by mode-superposition response spectrum method, and the average of bottom shear calculated by multiple time-history curves shall not be less than 80% of the calculation result obtained by mode-superposition response spectrum method. 4.2 Seismic design response spectrum of ground equipment 4.2.1 The seismic influence coefficient of equipment shall be determined according to the design basic acceleration of ground motion, site category, design earthquake group, natural vibration period and damping ratio of equipment. The maximum horizontal seismic influence coefficient shall be selected according to Table 4.2.1; the characteristic period of ground motion shall be selected based on the site category and design earthquake group according to Table 3.2.3. Table 4.2.1 Maximum horizontal seismic influence coefficient Seismic influence Design basic acceleration of ground motion 0.05g 0.10g 0.15g 0.20g 0.30g 0.40g Frequent earthquake 0.04 0.08 0.12 0.16 0.24 0.32 Moderate earthquake 0.12 0.23 0.34 0.45 0.68 0.90 Rare earthquake 0.28 0.50 0.72 0.90 1.20 1.40 4.2.2 The damping adjustment coefficient and shape parameters of the seismic influence coefficient curve (Figure 4.2.2) of equipment shall meet the following requirements: 1 The shape of seismic influence coefficient curve is divided into the following parts: 1) linear ascending segment, in which the natural vibration period is less than 0.1s; 2) horizontal segment, in which the natural vibration period is from 0.1s to characteristic period of ground motion; 3) curve descending segment, in which the natural vibration period is from the characteristic period of ground motion to 5 times of the characteristic period of ground motion; 4) linear descending segment, in which the natural vibration period is from 5 times of the characteristic period of ground motion to 15s. Figure 4.2.2 Seismic influence coefficient curve α—horizontal seismic influence coefficient; αmax—maximum horizontal seismic influence coefficient; η1—adjustment coefficient of descending slope of linear descending segment; γ—attenuation index of curve descending segment; Tg—characteristic period of ground motion; η2—damping adjustment coefficient; T—natural vibration period of equipment 2 The attenuation index of curve descending segment shall be determined using the following equation: (4.2.2-1) Where, γ——the attenuation index of curve descending segment; ζ——the damping ratio of equipment. 3 The adjustment coefficient of descending slope of linear descending segment shall be determined using the following equation: (4.2.2-2) Where, η1——the adjustment coefficient of descending slope of linear descending segment, taken as 0 where it is less than 0. 4 The damping adjustment coefficient shall be determined using the following equation: (4.2.2-3) Where, η2——the damping adjustment coefficient, taken as 0.55 where it is less than 0.55. 5 Where the calculated horizontal seismic influence coefficient is less than 0.05η2αmax, 0.05η2αmax is taken. 4.3 Horizontal seismic action of ground equipment 4.3.1 Where bottom shear method is adopted, the total design value of horizontal seismic action of equipment (Figure 4.3.1) shall be calculated using the following equations: Figure 4.3.1 Calculation for total horizontal seismic action of equipment Fh=ηREα1meqg (4.3.1-1) (4.3.1-2) (4.3.1-3) Where, Fh——the design value of total horizontal seismic action of equipment, N; η——the seismic importance coefficient of equipment, as selected according to Table 3.1.2; RE——the seismic action adjustment coefficient of equipment, as selected according to Table 4.3.1-1; α1——the horizontal seismic influence coefficient corresponding to the basic natural vibration period of equipment, as determined according to 4.2; meq——the equivalent total mass of equipment, kg; λm——the equivalent mass coefficient, taken as 1 for single-mass-point system while 0.85 for multi-mass-point system; mi, mj——the mass respectively focusing on mass points i, j, kg; Fhi——the design value of horizontal seismic action acting on the mass point i, N; hi, hj——the calculated height of the mass points i, j respectively, mm; δ——the bending deformation influence index, as selected according to Table 4.3.1-2; n——the number of mass points. Table 4.3.1-1 Horizontal seismic action adjustment coefficient Equipment category RE Horizontal equipment 0.45 Vertical equipment supported by legs 0.45 Vertical equipment supported by lugs 0.45 Vertical equipment supported by skirt 0.45 Spherical tank 0.45 Vertical cylindrical tank 0.40 Table 4.3.1-2 Bending deformation influence index Basic natural vibration period of equipment T1 (s) <0.5 0.5~2.5 >2.5 δ 1.0 0.75+0.5T1 2 4.3.2 Where mode-superposition response spectrum method is adopted, the calculations for design value of seismic action and seismic effect of equipment shall meet the following requirements: 1 The design value of horizontal seismic action of equipment at the mass point i in the j-th vibration mode shall be determined using the following equations: Foreword i 1 General provisions 2 Terms and symbols 2.1 Terms 2.2 Symbols 3 Basic requirements 3.1 Classification of seismic importance of equipment 3.2 Seismic influences 3.3 Equipment system design 4 Seismic action and seismic checking 4.1 General requirements 4.2 Seismic design response spectrum of ground equipment 4.3 Horizontal seismic action of ground equipment 4.4 Horizontal seismic action of on-frame equipment 4.5 Vertical seismic action 4.6 Load combination 4.7 Seismic checking 5 Horizontal equipment 5.1 General requirements 5.2 Seismic action and seismic checking 5.3 Details of seismic design 6 Vertical equipment supported by legs 6.1 General requirements 6.2 Natural vibration period 6.3 Seismic action and seismic checking 6.4 Details of seismic design 7 Vertical equipment supported by lugs 7.1 General requirements 7.2 Natural vibration period 7.3 Seismic action and seismic checking 7.4 Details of seismic design 8 Vertical equipment supported by skirt 8.1 General requirements 8.2 Natural vibration period 8.3 Seismic action and seismic checking 8.4 Details of seismic design 9 Spherical tanks 9.1 General requirements 9.2 Natural vibration period 9.3 Seismic action and seismic checking 9.4 Details of seismic design 10 Vertical cylindrical tanks 10.1 General requirements 10.2 Natural vibration period 10.3 Horizontal seismic action and seismic effect 10.4 Vertical stable allowable critical stress of tank shell 10.5 Seismic checking of tank shell 10.6 Liquid level sloshing wave height 10.7 Details of seismic design 11 Heater 11.1 General requirements 11.2 Natural vibration period 11.3 Seismic action and seismic checking 11.4 Details of seismic design Annex A Seismic action of on-frame equipment Annex B Seismic checking of vertical equipment supported by legs Annex C Seismic checking of vertical equipment supported by lugs Annex D Flexible matrix element Explanation of wording in this standard List of quoted standards 1 总 则 1.0.1 为贯彻执行国家有关防震减灾的法律法规.实行预防为主的方针,使石油化工设备经抗震设防后减轻地震破坏.减少经济损失。制定本标准。 1.0.2本标准适用于设计基本地震加速度不大于0.40g,或抗震设防烈度9度及以下地区的石油化工卧式设备、支腿式直立设备、支耳式直立设备、裙座式直立设备、球形储罐、立式圆筒形储罐和加热炉等钢制设备的抗震设计。 1.0.3按本标准进行抗震设计的石油化工设备,当遭受相当于本地区抗震设防烈度的设防地震影响时,设备本体、支撑构件和锚固结构不应损坏。 1.0.4 设计地震动参数或抗震设防烈度应按现行国家标准《中国地震动参数区划图》GB 18306的有关规定确定;对完成地震安全性评价的工程场地,应按批准的设计地震动参数或抗震设防烈度进行抗震设防。 1.0.5石油化工钢制设备的抗震设计,除应符合本标准外.尚应符合国家现行有关标准的规定。 2术语和符号 2.1 术 语 2.1.1 抗震设计 seismic design 对需要抗震设防的设备进行的一种专业设计.包括抗震计算和抗震措施。 2.1.2抗震设防烈度 seismic fortification intensity 按国家规定的权限批准作为一个地区抗震设防依据的地震烈度。 2.1.3地震作用 seismic action 由地震动引起的设备动态作用,包括水平地震作用和竖向地震作用。 2.1.4地震作用效应 seismic effect 在地震作用下设备产生的内力或变形。 2.1.5设计地震动参数design parameters of ground motion 抗震设计用的地震加速度时程曲线、加速度反应谱和峰值加速度。 2.1.6 设计基本地震加速度design basic acceleration of ground motion 50年设计基准期,超越概率10%的地震加速度的设计取值。 2.1.7 特征周期 characteristic period of ground motion 抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值。 2.1.8地震影响系数 seismic influence coefficient 单质点弹性体系在地震作用下的最大加速度反应与重力加速度比值的统计平均值。 2.1.9抗震措施 seismic fortification measures 除地震作用计算和抗力计算以外的抗震设计内容,包括抗震设计的基本要求、抗震构造措施等。 2.1.10抗震构造措施details of seismic design 根据抗震概念设计原则,一般不需计算而对结构和非结构各部分必须采取的各种细部要求。 2.1.11设备本体 body 设备壳体或加热炉框架结构。 2.1.12许用应力设计法 allowable stress design 按元件在设计载荷作用下截面中计算应力不超过材料许用应力为原则的设计方法。 2.1.13极限状态设计法limits state design 按结构或构件达到某种预定功能要求的极限状态为原则的工程结构设计方法。 2.2 符 号 2.2.1作用和作用效应: Fh——设备总水平地震作用设计值; Fv——设备底部总竖向地震作用设计值; Fhi——作用于质点i的水平地震作用设计值; Fhji——第j振型i质点的水平地震作用设计值; Fvi——设备质点i的竖向地震作用设计值; Fhk——构架上设备的水平地震作用设计值; meq——设备的等效总质量; mi、mj——分别为集中于质点i、j的质量; meqv——设备的竖向等效质量; mi——集中于质点i的质量; mj——集中于质点j的质量; Sj——由j振型水平地震作用产生的效应; Sh——水平地震作用效应; Xji——第j振型i质点的水平相对位移。 2.2.2材料性能和抗力: Et——设计温度下材料的弹性模量; Rel——材料屈服强度; σ——载荷组合作用下的应力值; [σ]——材料的抗震许用应力; [σ]t——设计温度下材料的许用应力; [σ]b——材料的抗震许用拉应力; [σ]bc——材料的抗震许用压应力; τ——载荷组合作用下的剪应力值; [τ]——材料的抗震许用剪应力; [τ]b——材料的抗震许用剪应力。 2.2.3计算系数: α1——对应于设备或结构基本自振周期的水平地震影响系数; αj——对应于设备第j振型自振周期的水平地震影响系数; αmax——水平地震影响系数最大值; αvmax——竖向地震影响系数最大值; φ——焊接接头系数; KL——抗震许用应力调整系数; Km——构架上设备的地震作用放大系数; ζ——设备的阻尼比; η——设备抗震重要度系数; RE——设备地震作用调整系数; η1——直线下降段的下降斜率调整系数; η2——阻尼调整系数; γ——曲线下降段的衰减指数; γj——第j振型的振型参与系数; δ——弯曲变形影响指数; λm——等效质量系数; k——计算系数。 2.2.4其他: hi、hj——分别为质点i、j的计算高度; T、T1——设备或结构的基本自振周期; Tg——特征周期; n——质点数; λ——长细比; λc——临界长细比; lk——计算长度; ——惯性半径; δe——截面有效厚度。 3 基本规定 3.1 设备抗震重要度分类 3.1.1 抗震设计时,设备抗震重要度应按设备用途和地震破坏后的危害程度分为以下四类: 1第一类.除第二、三、四类以外的设备。 2第二类.包括特种设备安全技术规范《固定式压力容器安全技术监察规程》TSG 21中的第Ⅱ类压力容器,按现行行业标准《立式圆筒形钢制焊接储罐安全技术规范》AQ 3053划分为第Ⅱ类的储罐,以及加热炉和高度为20m~80m的直立设备。 3第三类,包括特种设备安全技术规范《固定式压力容器安全技术监察规程》TSG 21中的第Ⅲ类压力容器,按现行行业标准《立式圆筒形钢制焊接储罐安全技术规范》AQ 3053划分为第Ⅲ类的储罐和高度大于80m的裙座式直立设备。 4第四类,消防用途的设备。 3.1.2 抗震计算时,设备抗震重要度系数应根据设备抗震重要度类别按表3.1.2选用。 表3.1.2重要度系数 设备抗震重要度类别 第一类 第二类 第三类 第四类 重要度系数η 0.90 1.00 1.10 1.20 3.2地震影响 3.2.1设备所在地区遭受的地震影响,除加热炉外,应采用相应于抗震设防烈度的设计基本地震加速度和特征周期表征。 3.2.2 设计基本地震加速度与抗震设防烈度的对应关系见表3.2.2。 表3.2.2设计基本地震加速度与抗震设防烈度的对应关系 设计基本地震加速度 0.05g 0.10g 0.15g 0.20g 0.30g 0.40g 抗震设防烈度 6 7 8 9 注:g为重力加速度。 3.2.3地震影响的特征周期应根据设备所在地的设计地震分组和场地类别确定。设计地震共分为三组,其特征周期应按表3.2.3采用。 表3.2.3特征周期(s) 设计地震分组 场地类别 I0 I1 Ⅱ Ⅲ Ⅳ 第一组 0.20 0.25 0.35 0.45 0.65 第二组 0.25 0.30 0.40 0.55 0.75 第三组 0.30 0.35 0.45 0.65 0.90 3.2.4我国主要城镇中心地区的抗震设防烈度、设计基本地震加速度值和设计地震分组,可按现行国家标准《建筑抗震设计规范》GB 50011的有关规定执行。 3.3设备体系设计 3.3.1设备体系应满足下列要求: 1 在满足工艺要求的前提下,设备宜露天布置; 2应具有合理的地震作用传递途径; 3应避免因设备零部件或附属构件失效而导致整个设备失效或抗震能力丧失; 4 对附着在设备本体上的附属设备的薄弱部位,应采取提高抗震能力的措施; 5设备的刚度、质量变化宜平缓,其内件和整个设备的质量中心宜低位布置; 6 高径比大于10或高度大于10m的裙座式直立设备,宜采用带螺栓座的结构形式; 7 与设备连接的外部管线.在地震过程中应能适应管线与设备连接点的位移。 3.3.2 附属构件材料应符合下列规定: 1 材料的屈服强度与抗拉强度的比值不应大于0.85; 2 支承构件的材料.其延伸率不应小于15%; 3需要焊接的材料,应具有良好的焊接性和满足设计要求的冲击韧性; 4在低温条件下.应计入低温导致材料冲击韧性降低的影响。 4地震作用和抗震验算 4.1 一般规定 4.1.1 设备的地震作用和抗震验算应符合下列规定: 1 应计算水平方向的地震作用并进行抗震验算; 2设计基本地震加速度为0.20g~0.40g,或抗震设防烈度为8度、9度时,对直径大于4m,且两支座间距大于20m的卧式设备,以及高度大于20m的直立设备和加热炉落地烟囱,应计算竖向地震作用并进行抗震验算; 3 安装在构架上的设备,应计入设备所在构架的地震放大作用。 4.1.2当设计基本地震加速度等于0.05g,或抗震设防烈度为6度时,对第一类和第二类设备可不进行设备的地震作用计算,但应满足抗震措施要求。 4.1.3设备的地震作用计算,宜采用下列方法: 1 下列设备可采用底部剪力法: 1)高度小于或等于10m的直立设备; 2)高径比小于5,且质量和刚度沿高度分布比较均匀的直立设备; 3)可简化为单质点体系的设备。 2除本条第1款外的设备,宜采用振型分解反应谱法。 3当设计基本地震加速度大于或等于0.30g时,高度大于120m,且高径比大于25的直立设备和15×104 m3以上的立式圆筒形储罐,宜采用时程分析法进行补充计算。 4.1.4采用时程分析法时,应按设备所在场地类别和设计地震分组选用不少于两组的实际强震加速度记录和一组人工模拟的地震加速度时程曲线,平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符,加速度时程的最大值可按表4.1.4采用。 表4.1.4 时程分析所用地震加速度时程的最大值(cm/s2) 地震影响 设计基本地震加速度 0.05g 0.10g 0.15g 0.20g 0.30g 0.40g 多遇地震 18 35 55 70 110 140 设防地震 50 100 150 200 300 400 罕遇地震 125 220 310 400 510 620 采用时程分析法时.每条时程曲线计算所得设备底部剪力不应小于振型分解反应谱法计算结果的65%,多条时程曲线计算所得的底部剪力的平均值不应小于振型分解反应谱法计算结果的80%。 4.2地面设备设计反应谱 4.2.1 设备的地震影响系数应根据设计基本地震加速度、场地类别、设计地震分组、设备自振周期和阻尼比确定。其水平地震影响系数最大值应按表4.2.1选用,特征周期应根据场地类别和设计地震分组按本标准表3.2.3选用。 表4.2.1 水平地震影响系数最大值 地震影响 设计基本地震加速度 0.05g 0.10g 0.15g 0.20g 0.30g 0.40g 多遇地震 0.04 0.08 0.12 0.16 0.24 0.32 设防地震 0.12 0.23 0.34 0.45 0.68 0.90 罕遇地震 0.28 0.50 0.72 0.90 1.20 1.40 4.2.2设备的地震影响系数曲线(图4.2.2)的阻尼调整系数和形状参数,应符合下列规定: 1 地震影响系数曲线的形状分以下几部分: 1)直线上升段,自振周期小于0.1s的区段; 2)水平段,自振周期自0.1 s至特征周期区段; 3)曲线下降段,自振周期自特征周期至5倍特征周期区段; 4)直线下降段,自振周期自5倍特征周期至15s区段。 图4.2.2地震影响系数曲线 α—水平地震影响系数;αmax—水平地震影响系数最大值; η1—直线下降段的下降斜率调整系数;γ—曲线下降段的衰减指数; Tg—特征周期;η2—阻尼调整系数;T—设备自振周期 2 曲线下降段的衰减指数应按下式确定: (4.2.2—1) 式中:γ——曲线下降段的衰减指数; ζ——设备的阻尼比。 3直线下降段的下降斜率调整系数应按下式确定: (4.2.2—2) 式中:η1——直线下降段的下降斜率调整系数,小于0时取0。 4 阻尼调整系数应按下式确定: (4.2.2-3) 式中:η2——阻尼调整系数,小于0.55时取0.55。 5 当水平地震影响系数的计算值小于0.05η2αmax时取0.05η2αmax。 4.3地面设备水平地震作用 4.3.1 当采用底部剪力法时,设备总水平地震作用设计值(图4.3.1)应按下列公式计算: 图4.3.1 设备总水平地震作用计算 Fh=ηREα1meqg (4.3.1—1) (4.3.1—2) (4.3.1—3) 式中:Fh——设备总水平地震作用设计值(N); η——设备抗震重要度系数,按本标准表3.1.2选用; RE——设备地震作用调整系数,按本标准表4.3.1—1选用; α1——相应于设备基本自振周期的水平地震影响系数,按本标准第4.2节的规定确定; meq——设备的等效总质量(kg); λm——等效质量系数,单质点取1,多质点体系取0.85; mi、mj——分别为集中于质点i、j的质量(kg); Fhi——作用于质点i的水平地震作用设计值(N); hi、hj——分别为质点i、j的计算高度(mm); δ——弯曲变形影响指数,按表4.3.1—2选用; n——质点数。 表4.3.1-1 水平地震作用调整系数 设备类型 RE 卧式设备 0.45 支腿式直立设备 0.45 支耳式直立设备 0.45 裙座式直立设备 0.45 球形储罐 0.45 立式圆筒形储罐 0.40 表4.3.1-2弯曲变形影响指数 设备基本自振周期T1(s) <0.5 0.5~2.5 >2.5 δ 1.0 0.75+0.5T1 2 4.3.2采用振型分解反应谱法时,设备的地震作用设计值和作用效应的计算应符合下列规定: 1设备j振型i质点的水平地震作用设计值,应按下列公式确定: Fhji=ηREαjγjXjimig (4.3.2—1) (4.3.2—2) 式中:Fhji——第j振型i质点的水平地震作用设计值(N); αj——相应于设备第j振型自振周期的水平地震影响系数,按本标准第4.2节的规定确定; γj——第j振型的振型参与系数; Xji——第j振型i质点的水平相对位移。 2水平地震作用效应应按下式确定: (4.3.2—3) 式中:Sh——水平地震作用效应; Sj——由j振型水平地震作用产生的效应,取前2阶~3阶振型,当基本自振周期大于1.5s时,振型数不少于3阶。 4.4构架上设备水平地震作用 4.4.1 构架与设备的质量比大于或等于2时,设备的水平地震作用宜按本节规定计算。 4.4.2安装在构架上设备的水平地震作用设计值可按下式计算: Fhk=KmηREα1meqg (4.4.2) 式中:Fhk——构架上设备的水平地震作用设计值(N); Km——构架上设备的地震作用放大系数,按表4.4.2选用。 表4.4.2构架h设备的地震作用放大系数 构架层数 第一层 第二层 第三层 第四层 第五层及以上 放大系数 1.2 1.4 1.6 1.8 2.0 注:每层构架高度可按4m~5m确定。 4.4.3 当已知构架结构参数时,安装在构架上设备的水平地震作用设计值可按本标准附录A的规定计算。 4.5竖向地震作用 4.5.1 直立式设备的竖向地震作用设计值(图4.5.1),应按下列规定计算: 图4.5.1 设备竖向地震作用计算 1 设备底部总竖向地震作用设计值应按下式计算: Fv=ηREαvmaxmeqvg (4.5.1—1) 式中:Fv——设备底部总竖向地震作用设计值(N)。 αvmax——竖向地震影响系数最大值,取水平地震影响系数最大值的65%; meqv——设备的竖向等效质量(kg),取设备总质量的75%。 2设备任意质点i处的竖向地震作用,可按下式计算: (4.5.1—2) 式中:Fvi——设备质点i的竖向地震作用设计值(N)。 4.5.2 卧式设备的竖向地震作用设计值,当设计基本地震加速度为0.20g、0.30g和0.40g时,可分别取该设备总重力荷载的10%、15%和20%。 4.6 载荷组合 4.6.1 采用极限状态法设计时,地震作用与其他载荷作用的组合,应按现行国家标准《建筑抗震设计规范》GB 50011的有关规定执行。 4.6.2 采用许用应力法设计时,地震作用与其他载荷作用的组合,应按下列原则进行组合: 1 设备的重力载荷,包括设备的自重(包括内件和填料等),正常工作条件下内装物料的重力载荷,以及附属设备及隔热材料、衬里、管道、扶梯、平台等的重力载荷; 2 压力载荷,包括内压、外压或最大压差; 3液柱静压力; 4水平风载荷作用,对直立设备和球形储罐,水平风载荷组合系数取0.25,其他设备取0; 5水平、竖向地震作用设计值; 6雪载荷,考虑组合系数0.5,高温部位以及设备承载面较小时取0; 7 其他载荷.包括支座、底座圈、支耳及其他型式支撑件的反作用力,连接管道和其他部件的作用力,温度梯度或热膨胀量不同引起的作用力等; 8活载荷,包括人、工具、维修、冲击、振动等主要可移动载荷。 4.7 抗震验算 4.7.1采用极限状态设计法时,应按现行国家标准《建筑抗震设计规范》GB 50011的有关规定进行抗震验算。 4.7.2采用许用应力设计法时,应按下列规定进行抗震验算: 1 设备进行抗震验算时,载荷组合作用下验算部位的应力值应满足下列公式的要求: σ≤φ[σ] (4.7.2—1) τ≤[τ] (4.7.2—2) 式中:σ——载荷组合作用下的应力值(MPa); φ——焊接接头系数.受压时取1.0; [σ]——材料的抗震许用应力(MPa); τ——载荷组合作用下的剪应力值(MPa); [τ]——材料的抗震许用剪应力(MPa)。 2设备抗震验算的许用应力.应按下列规定确定: 1)设备本体及支承构件可按下式计算: [σ]=KL[σ]t (4.7.2—3) 式中:[σ]——材料的抗震许用应力(MPa); KL——抗震许用应力调整系数,设备本体取1.2,支承构件取1.33; [σ]t——设计温度下材料的许用应力(MPa)。 2)锚栓可按下列公式计算: 碳素钢 [σ]b=0.75ReL (4.7.2-4) 低合金钢 [σ]b=0.6ReL (4.7.2-5) 碳素钢、低合金钢 [τ]b=0.8[σ]b (4.7.2-6) 式中:[σ]b——材料的抗震许用拉应力(MPa); ReL——材料屈服强度(MPa); [τ]b——材料的抗震许用剪应力(MPa)。 3)锚固附件可按下式计算: [σ]b=KL[σ]t (4.7.2-7) 式中:KL——抗震许用应力调整系数.可取1.33; [σ]t——设计温度下材料的许用应力(MPa)。 4)锚固附件及支承构件的许用压应力,可按下列规定计算: 当λ≤λc时: (4.7.2—8) 当λ>λc时: (4.7.2—9) (4.7.2—10) (4.7.2—11) 式中:λ——长细比; λc——临界长细比; [σ]bc——材料的抗震许用压应力(MPa); k——计算系数,按表4.7.2取值; lk——计算长度(mm); ——惯性半径(mm),对长方形截面取0.289δc,其中δc为截面有效厚度; Et——设计温度下材料的弹性模量(MPa)。 表4.7.2计算系数k 边界条件 两端简支 一端固支、一端自由 两端固支 一端固支、一端简支 k 1 2 0.5 0.7 5)支承构件与设备本体连接处焊缝的许用应力,可按下列公式计算: [σ]=KL[σ]t (4.7.2—12) [τ]=0.8[σ] (4.7.2—13) 式中:KL——抗震许用应力调整系数,取1.2; [σ]t——设计温度下材料的许用应力(MPa),取附属构件与本体材料许用应力的较小值。 5 卧式设备 5.1 一般规定 5.1.1 卧式设备的抗震设计应符合本章规定。 5.1.2 卧式设备的基本自振周期可取0.10s;当多台重叠时,基本自振周期可取0.15s。 5.2地震作用和抗震验算 5.2.1 卧式设备的水平地震作用计算,地震影响系数可按本标准第4.2.1条设防地震的规定取最大值。 5.2.2 安装在地面上的卧式设备,应按本标准第4.3节的要求分别计算其轴向、横向水平地震作用;安装在构架上的卧式设备,可按本标准第4.4节的规定分别计算轴向、横向水平地震作用。 5.2.3 卧式设备的阻尼比可取0.05。 图5.2.4重叠式卧式设备计算 H1、Hi、Hn—分别为设备支座底板距地面或构架表面高度; h1、hi、hn—分别为设备质心距地面或构架表面高度; m1、mi、mn—分别为设备集中于质点1、i、n的质量 5.2.4 对重叠式卧式设备,在轴向和横向均可视为一个多自由度体系(图5.2.4),对安装在地面上的重叠式卧式设备的地震作用,可按本标准第4.3节计算,地震影响系数可取水平地震影响系数的最大值;对安装在构架上的重叠式卧式设备的总地震作用和各质点的水平地震作用.可按本标准第4.4节计算。 5.2.5 卧式设备的本体、支座、地脚螺栓等应进行抗震验算,并应符合本标准第4.7节的规定。 5.3抗震构造措施 5.3.1 设备每个支座的地脚螺栓数量不应少于2个,螺栓直径不宜小于M16,螺母应设有防松动措施。 5.3.2滑动支座上的地脚螺栓应具有限制设备横向位移的功能。 5.3.3抗震设防烈度大于或等于7度时,支座应与设备本体进行焊接。 6支腿式直立设备 6.1一般规定 6.1.1 高度H不大于10m(含支腿高度),且高径比不大于5的支腿式直立设备的抗震设计(图6.1.1)应符合本章规定。 图6.1.1 支腿式直立设备 6.1.2对安装在地面上,直径小于1.2m、高度小于3m(含支腿高度),且支腿高度低于0.5m的支腿式直立设备,当抗震设防烈度为6度或7度时,可不进行抗震验算,但应满足抗震构造措施要求。 6.2 自振周期 6.2.1 支腿式直立设备的基本自振周期可按下式计算: (6.2.1) 式中:T1——设备的基本自振周期(s); me——设备的质量(kg); K——支承结构的侧移刚度(N/mm),按本标准第6.2.2条计算。 6.2.2 支腿式直立设备支承结构的侧移刚度,应按下列公式计算: (6.2.2—1) (6.2.2—2) (6.2.2—3) (6.2.2—4) (6.2.2—5) 式中:K——支承结构的侧移刚度(N/mm); K1——支承结构的弯曲刚度(N/mm); K2——支承结构的剪变刚度(N/mm); Kc——单根支腿的弯曲刚度(N/mm); λc——质心高度修正系数; n——支腿的数量; E——支腿材料的弹性模量(MPa); AZ——单根支腿的横截面面积(mm2); Db——支腿中心圆直径(mm); L——支腿的高度(mm); G——支腿材料的弹性剪变模量(MPa); I1——单根支腿的切向水平截面惯性矩(mm4); I2——单根支腿的径向水平截面惯性矩(mm4); h——基础顶面至设备质心的高度(mm)。 6.3地震作用和抗震验算 6.3.1 支腿式直立设备的水平地震作用计算,地震影响系数应符合本标准第4.2节设防地震的规定。 6.3.2安装在地面上的支腿式直立设备的地震作用.应按本标准第4.3.1条计算;安装在构架上的支腿式直立设备的地震作用,应按本标准第4.4节的规定计算。 6.3.3 支腿式直立设备的阻尼比可取0.05。 6.3.4 支腿式直立设备壳体、支腿、支腿与筒体连接焊缝、地脚螺栓等的抗震验算,应符合本标准第4.7节的规定。 6.3.5 支腿式直立设备的抗震验算方法可按本标准附录B的规定执行。 6.4抗震构造措施 6.4.1 支腿数量不应少于3个.设防烈度为8度、9度,设备直径大于800mm时,支腿数量不宜少于4个。 6.4.2每个支腿均应设置地脚螺栓,螺栓直径不宜小于M16,螺母应设有防松动措施。 7支耳式直立设备 7.1 一般规定 7.1.1 支耳式直立设备的抗震设计(图7.1.1)应符合本章规定。 图7.1.1 支耳式直立设备 7.1.2对于直径小于2m、切线长度小于5m的支耳式直立设备,当抗震设防烈度为6度或7度时,可不进行抗震验算,但应满足抗震构造措施要求。 7.2 自振周期 7.2.1 支耳式直立设备的基本自振周期,可按下式计算: T1=0.56+0.4×10-6 (7.2.1) 式中:T1——支耳式直立设备的基本自振周期(s); H0——设备顶部到地面的距离(mm); Do——设备外直径(mm)。 7.2.2当切线长度小于3m时,T1可取0.3s。 7.3地震作用和抗震验算 7.3.1 支耳式直立设备的水平地震作用计算,地震影响系数应符合本标准第4.2节设防地震的规定。 7.3.2 支耳式直立设备的水平地震作用,应按本标准第4.3.1条计算。 7.3.3支耳式直立设备的阻尼比可取0.03。 7.3.4支耳式直立设备壳体、支耳、支耳与筒体连接焊缝、地脚螺栓等的抗震验算,应符合本标准第4.7节的规定。 7.3.5 支耳式直立设备的抗震验算方法可按本标准附录C的规定执行。 7.4抗震构造措施 7.4.1 支耳宜设置在设备重心高度以上。 7.4.2 支耳数量不宜少于4个,且应为偶数。当设备直径小于1000mm时,支耳数量不应少于2个。 7.4.3每个支耳均应设置地脚螺栓,螺母应设有防松动措施。 8裙座式直立设备 8.1一般规定 8.1.1裙座式直立设备的抗震设计应符合本章规定。 8.1.2高度大于20m,设计基本地震加速度大于或等于0.20g或抗震设防烈度为8度、9度时,应计入竖向地震作用的影响。 8.2 自振周期 8.2.1 裙座式直立设备可简化为多质点体系,计算自振周期。 8.2.2等直径、等厚度的安装在地面基础上的裙座式直立设备,其基本自振周期可按下式计算: (8.2.2) 式中:T1——设备的基本自振周期(s); H——从基础顶面到设备顶部的高度(mm); m0——设备的总质量(kg); Et——材料的弹性模量(MPa); Di——设备圆筒体的内直径(mm); δe——设备筒体的有效厚度(mm)。 8.2.3 不等直径或不等厚度的落地式直立设备,可将直径、厚度、材料沿高度变化的设备视为一个多质点体系(图8.2.3),其基本自振周期可按下列公式计算: (8.2.3—1) 圆筒段: (8.2.3—2) 圆锥段: (8.2.3—3) 式中:T1——设备的基本自振周期(s); mi——设备第i计算段的质量(kg); hi——第i段设备质量距基础底板顶面的高度(mm); H——从基础底板顶面至设备顶面的总高度(mm); Hi——从设备顶面至第i段底截面的距离(mm); Eti、Eti-1——第i段、第i-1段壳体材料的弹性模量(MPa); Ii、Ii-1——第i段、第i-1段壳体的截面惯性矩(mm4); Di——第i段圆筒体的内直径(mm); δei——各计算截面的圆筒或锥壳的有效厚度(mm); Die——锥壳大端内直径(mm); Dif——锥壳小端内直径(mm)。 图8.2.3 裙座式直立设备多质点体系计算 8.2.4安装在构架上的裙座式直立设备,其自振周期可按下列规定计算: 1 支承构架应视为设备的一部分,每层构架可简化为一个质点,构架的层间刚度折算可按位移等效原理确定,设备的自振周期可采用振型分解法计算。 2高径比小于或等于5,且壁厚小于或等于30mm的裙座式直立设备,其基本自振周期可按本标准公式(7.2.1)近似计算。 8.3地震作用和抗震验算 8.3.1裙座式直立设备的水平地震影响系数应符合本标准第4.2节的规定,最大值应按本标准表4.2.1设防地震取值。 8.3.2裙座式直立设备的水平地震作用计算应符合本标准第4.3节的规定。 8.3.3 高度小于或等于10m或高径比小于或等于5的裙座式直立设备,可采用底部剪力法进行水平地震作用计算,其地震影响系数可取设防地震的水平地震影响系数的最大值。 8.3.4高度大于10m且高径比大于5的裙座式直立设备,可采用振型分解法进行计算。 8.3.5裙座式直立设备的阻尼比可按下列规定取值: 1 当设备的基本自振周期小于或等于1.5s时,可取0.035。 2 当设备的基本自振周期大于1.5s,且小于或等于2.0s时,可按下式计算: ζ=0.11-0.05T1 (8.3.5) 3 当设备的基本自振周期大于2.0s时,可取0.01。 8.3.6裙座式直立设备的竖向地震作用,应按本标准第4.5节的规定计算。 8.3.7裙座式直立设备的壳体、裙座筒体、基础环、地脚螺栓座、裙座与壳体连接焊缝、螺栓座与裙座筒体连接焊缝、地脚螺栓等应进行抗震验算.并应符合本标准第4.7节的规定。 8.4抗震构造措施 8.4.1 设备的平台不宜与其他设备或构筑物直接连接。 8.4.2设备外部较重的附属设备宜另设支承结构,不宜由设备直接支承。 8.4.3设备的内部承重构件应与壳体牢固连接。 8.4.4设备的高径比大于5,且抗震设防烈度大于7度时,设备筒体与裙座不宜采用搭接连接。 8.4.5 设备的直径大于或等于800mm时,地脚螺栓不应小于M24,其数量不宜少于8个,螺母应设有防松动措施。 9 球形储罐 9.1一般规定 9.1.1赤道正切或相割以支柱支撑的可调式和固定式拉杆结构的球形储罐(以下简称球罐)的抗震设计应符合本章规定。 9.1.2球罐地震作用计算应计入储液的影响。 9.2自振周期 9.2.1 球罐在操作状态下的等效质量应按下列公式计算: meq=m1+m2+m5+0.5m6+m7 (9.2.1—1) m2=mLφ (9.2.1—2) 式中:meq——球罐在操作状态下的等效质量(kg); m1——球壳质量(kg); m2——储液的有效质量(kg); m5——球罐保温层的质量(kg); m6——支柱和拉杆的质量(kg); m7——附件质量(kg),包括人孔、接管、液位计、内件、喷淋装置、安全阀、梯子平台等; mL——球罐储液质量(kg); φ——储液的有效质量系数,根据球罐内液体充满度按图9.2.1选取。 储液的有效质量系数φ 充满度m1/m100 图9.2.1储液的有效质量系数 m100—球罐100%充满液体时的液体质量 9.2.2球罐构架(图9.2.2)的水平刚度应按下列公式计算: |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB/T 50761-2018, GB 50761-2018, GBT 50761-2018, GB/T50761-2018, GB/T 50761, GB/T50761, GB50761-2018, GB 50761, GB50761, GBT50761-2018, GBT 50761, GBT50761 |