![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Bibliography 6 Foreword This document is drafted in accordance with the provisions of GB/T 1.1202 "Guidelines for Standardization Work Part 1: Structure and Drafting Rules of Standardization Documents". This document replaces GB/T 15613.1-2008 "Acceptance Test of Hydraulic Turbine, Accumulator Pump and Pump Hydraulic Turbine Model Part I; General Provisions" GB/T 15613.2-2008 "Acceptance Test of Hydraulic Turbine, Accumulator Pump and Pump Hydraulic Turbine Model Part II: General Hydraulic Performance Test" GB/T 15613.3-2008 "Acceptance Test of Hydraulic Turbine, Accumulator Pump and Pump" and GB/T 15613.3-2008 "Acceptance Test of Hydraulic Turbine, Accumulator Pump and Pump Acceptance Test of Hydraulic Turbine Model Part III: Auxiliary Performance Test" and GB/T 10969-2008 "Technical Conditions of Hydraulic Turbine, Accumulator Pump and Pump Hydraulic Turbine Flux Components", compared with GB/T 15613,1-2008, GB/T 15613.2-2008, GB/T 15613.3-2008 and GB/T 10969-2008, except for structural adjustment and editorial changes. In addition to structural adjustment and editorial changes, the main technical changes are as follows. Changed the definition of cavitation coefficient (see 3.4.7, 3.3.6 in GB/T 15613.1-2008); a) Changed pressure pulsation nomenclature and analysis method (see 3.4.11, 3.3.10 in GB/T 15613.1-2008): b) c) Changes to the model and prototype dimensional inspection methods and inspection tools (see 5.2.1, 5.2,3, 5.2.4, 5.2.5 and 5.2.7, 4.1, 4.2 and 4.5 in GB/T 10969-2008). d) Increased accuracy requirements for dimensional checks due to new technology (see 5.2.8). e) Combined and simplified the dimensional checklist (see 5,2.10, 4.7.1.6, 4.7.2.3 and 4.7.3.5 in GB/T 10969-2008); d) Changed the requirements for prototype waviness (see 5.2.11.2, 4.8.2 in GB/T 10969-2008). Changed the measurement method of roughness (see 5.2.11.3, 4.8.1 in C2/T 10969 I-2008); Changed the measurement method/reference of gas core content in cavitation test (see 5.7.3.2.2, h)5.5.3.2 in GB/T 15613.1-2008). Changed the flow measurement method (see 6.2, 5.2 in CB/T 15613.2 I 2008);2 Added requirement for accurate measurement of model pressure pulsation analysis time (see 7.2.1.2.4). k) Changed the method of converting model pressure pulsation measurements to prototypes (see 7.2.2.8, 5.1.7 in GB/T 15613.3-2008). 5.1.7 of GB/T 15613.3-2008). The conversion method for radial thrust has been changed (see 7.3, 5.3.3 in GB/T 15613.3-2008);1 m) Changed the hydraulic load test of control components (see 7.4, 5.4 in GB/T 15613.3-2008). Changed the test method in the extended operation range (see 7.5, 5.5 in GB/T 15613.3-2008): n ) Changes to the index test (see 7.6, 5.6 in GB/T 15613.3-2008); 0 Addition of a new hydraulic performance conversion method covered by IEC 62097:2019 (see Appendix E). 1 Scope This document applies to impact and recoil type hydraulic turbines, accumulator pumps and pump turbines tested under laboratory conditions. This document applies to models corresponding to prototypes with unit power greater than 5 MW or nominal diameter greater than 3 m. It is generally not appropriate to apply the procedures specified in this document exclusively to turbines with smaller unit powers or nominal diameters. However, if both the supplier and the customer agree, it is possible to refer to this type of hydraulic machinery. In this document, the term "turbine" includes water pump turbines operating in the turbine mode, and the term "water pump" includes water pump turbines operating in the pump mode. Except for matters related to testing, this document does not cover matters of purely commercial interest. As long as the structure or components of the machinery do not affect the performance of the model or the interrelationship between the model and the prototype, then this document does not cover either the detailed structure of the hydraulic machinery or the mechanical performance of the hydraulic machinery components. This document specifies the matters related to the model acceptance tests to verify that the main hydraulic performance of the turbine, storage pump and pump turbine meets the contract guarantee values (see 4.2). If you disagree with any of the steps of the tests, you may refer to this document, which contains the rules guiding the conduct of the tests and describes the measurement methods to be adopted. The main purpose of this document is. A definition of the terms and parameters used. To determine the hydraulic performance of the model, specify the test method and the measurement parameters involved. -Provide the calculation method of the results and the comparison method with the guaranteed value. Determine whether the contract guarantee values are met within the limits specified in this document. Define the scope, content and structure of the final report. Guaranteed values can be given in one of the following ways. Guaranteed values for the hydraulic performance of the prototype, calculated from the model test results taking into account the scale effect; guaranteed values for the hydraulic performance of the model. In addition, some auxiliary performance data need to be determined for the design or operation of the turbine prototype (see 4.4). Unlike the main hydraulic performance requirements in Chapters 4 to 6, the information on auxiliary performance data given in Chapter 7 is only of a recommendatory or guidance nature for the user (see 7.1). If the expected conditions of the field acceptance test (see GB/T 20043-2005) cannot verify the guaranteed value of the prototype, it is more recommended to conduct model acceptance tests. 2 Normative reference documents The contents of the following documents constitute the essential provisions of this document through the normative references in the text. Among them, note the date of the reference document, only the date of the corresponding version applies to this document; do not note the date of the reference document, its latest version (including all the revision of the list) applies to this document. GB/T 3505-2009 Product Geometry Technical Specification (GPS) Surface Structure Profile Method Terminology, Definitions and Surface Structure Parameters (ISO 4287:1997, IDT) ISO 2186 Measurement of fluid flow in closed conduits-Connections for pressure signal transmissions between primary and secondaryelements) Note:GB/T 26801-2011 Fluidflow in closed conduits-Connections for pressure signal transmissions between primary and secondaryaryelements (ISO 2186:2007.1DT) ISO 2533 Standard atmosphere (Standard atmosphere) ISO 4185 Measurement of flow of fluids in closed pipes Weighing method 3 Terms and definitions, symbols and units 3.1 General rules The following general terms and definitions will be used in this document. Special terms will be explained where they appear. Terms, definitions or units of measure that are in disagreement should be clarified by both the supply and demand sides prior to the test. 3.2 General Terms 3.2.1 Test point Without changing the operating conditions and settings, consists of one or more consecutive sets of readings and/or records, which are sufficient to calculate the performance of the hydraulic machinery under the operating conditions and settings. 3.3 Units This document uses the International System of Units (SI, see ISO 80000-4). All terms are expressed in SI basic units or related units derived therefrom". When these units are used, the basic equations are valid. When other units not related to SI are used for certain data, this also needs to be considered (e.g., kilowatts instead of watts for power, kilopascals or bars instead of bars for pressure, minutes instead of seconds for speed, etc.). Because the absolute temperature (expressed in Kelvin) is rarely used, the temperature is expressed in degrees Celsius. Any other system of units may be used only if agreed to in writing by both the supplier and the customer. 3.4 Terminology, symbols and units 3.4.1 Terminology and definition summary table 4 hydraulic performance guarantee value of the nature and range 4.1 General rules 4.1.1 Design data and agreed values The demander shall be responsible for the guaranteed values based on such as reference section, water level, hydraulic specific energy (see 3.4.7.1), hydraulic specific energy loss and other specified data. The demander shall also be responsible for the coordination of the plumbing, electrical and mechanical interactions of the hydroelectric power transmission system. At a minimum, the demander shall provide the following precise and sufficiently detailed data to the hydraulic machinery supplier. 4.2 Guaranteed values of the main hydraulic properties verified by model tests 4.2.1 Various types of hydraulic machinery to ensure the amount of 4.2.1.1 Power The term "power" usually refers to the mechanical power of the runner/impeller (see 3.4.9.3). When guaranteeing the mechanical power of the prototype (see 3.4.9.2), the mechanical power loss of the prototype shall be taken into account (see 3.4.9.4). 4.2.1.2 Flow and/or specific energy 4.3 Model test can not verify the guaranteed value 4.3.1 Guarantee of cavitation The amount of cavitation is only guaranteed on the prototype. The guaranteed values of the prototype shall be evaluated according to IEC 60609 (all parts). In the model test. Some potential areas of cavitation can be identified by visual observation (see 5.5.3.6) 5 Execution of the test 5.1 Requirements for the test bench and model 5.1.1 Choice of laboratory Chinese standard A laboratory that can meet the requirements of this document in terms of general arrangement, capacity and quality of instruments is desirable to be qualified. For the same project of different suppliers of models for comparative testing, it is appropriate to choose a neutral laboratory. 5.1.2 test bench 5.1.2.1 General characteristics of the test circuit When the model cavitation phenomenon occurs, no other parts of the test circuit should occur to affect the stability or normal operation of the test bench or model performance measurement device cavitation phenomenon. All entrained air bubbles in the model should not affect the performance of the measuring instrument. In particular, flow and pressure measuring devices. Between the flow measurement instrument and the test model, there should be no external flow replenishment and internal flow leakage. These requirements should be easy to verify. 5.1.2.2 Test bench capacity Test bench capabilities (such as power, pressure, hydraulic specific energy, flow and NPSE) should meet the requirements of the minimum size of the model and test conditions listed in 5.4.2. Test bench operation should be stable and steady-state, without fluctuations or pulsation effects (see 5.4.3). 6 The main hydraulic properties of the measurement and calculation methods 6.1 Data acquisition and processing 6.1.1 Overview Data acquisition and processing through the sensor, multiplexer, signal converter or signal conditioner, data memory and computer components of the measurement chain, the physical signal to be measured into the appropriate engineering quantities, the final output is the parameters expressed as meaningful performance data. 6.2 Flow measurement 6.2.1 General In the hydraulic machinery flow channel and flow measurement equipment between the desirable no external flow complement and internal flow leakage. If other flows exist, they should be measured separately. Model acceptance test during the flow measurement method is divided into the primary method and secondary method. 7 Auxiliary performance test I-measurement methods and results 7.1 Auxiliary test data measurement instructions 7.1.1 General rules 4.4 defined in the auxiliary performance test data (torque, force, pressure pulsation, etc.) can provide information for the design and operation of hydraulic machinery in hydropower plants. Therefore, the need for auxiliary performance data measurement, and to be specified. Each operating point of hydraulic machinery, whether steady-state or transient, can be described by mechanical quantities and hydraulic forces (usually with oscillatory characteristics). Models usually operate in steady-state conditions, it is desirable to simulate the transient process of the prototype through the model, but its data can only be derived from a series of test data under steady-state conditions. 7.2.1 describes the data acquisition and processing requirements beyond those specified in 6.1. Measurements of certain auxiliary performance data of the model are usually not required if they can be predicted with sufficient accuracy from similar hydraulic machinery (e.g., blade and guide vane moments, radial thrust, etc.). Measurement of auxiliary data should be determined in accordance with the technical outline (see 5.5.3.2). Hydraulic machinery should be considered as an integral part of the entire hydropower facility, it is appropriate to study the unstable operation of the hydraulic system caused by the inherent frequency excitation. 7.2.2 and 7.2.3 involves the relevant confirmation procedures. For the structural design of the prototype, the hydraulic loads acting on the components of the prototype can be converted from the model test data using appropriate conversion laws. 7.3 and 7.4 describe the methods and test conditions for obtaining the average and dynamic components of the above hydraulic loads. Start-up, shutdown and/or all condition changes will cause the unit to move away from the "normal" operating range into transient operating conditions. Therefore, in some cases, the hydraulic and mechanical correlations within this extended operating range should be investigated. 7.5 covers hydraulic performance measurements within the extended operating range (i.e., the four quadrant characteristics of the pump turbine). Appendix A (informative) dimensionless terms Appendix B (Normative) Physical Characteristics, Data Appendix C (informative) Summary of test and calculation procedures Appendix D (normative) Scale effect of hydraulic efficiency of impact machinery Appendix E (informative) Comparison of GB/T 15613 and IEC 6209?.2019 on the conversion method of hydraulic efficiency of impact hydraulic machinery Appendix F (normative) Calculation of prototype fly-away characteristics considering friction loss and wind loss of the unit Appendix G (informative) Example of determining the smoothest curve: independent zone method Appendix H (Informative) Example of error source analysis and uncertainty assessment Appendix I (normative) Scale effect of hydraulic efficiency of bucket-type turbines Appendix J (normative) Random error analysis of tests under constant operating conditions Appendix K (normative) Calculation of cavitation system effect 0, for power plants Appendix L (informative) Flow chart of hydraulic specific energy, flow and power Appendix M (informative) Synchronous and asynchronous components of pressure signals Appendix N (informative) Intrinsic frontal force of the hydraulic system Appendix O (informative) Calculation of axial force components Bibliography Foreword 1 Scope 2 Normative reference documents 3 Terms and definitions, symbols and units 4 hydraulic performance guarantee value of the nature and range 5 Execution of the test 6 The main hydraulic properties of the measurement and calculation methods 7 Auxiliary performance test I-measurement methods and results Appendix A (informative) dimensionless terms Appendix B (Normative) Physical Characteristics, Data Appendix C (informative) Summary of test and calculation procedures Appendix D (normative) Scale effect of hydraulic efficiency of impact machinery Appendix E (informative) Comparison of GB/T 15613 and IEC 6209?.2019 on the conversion method of hydraulic efficiency of impact hydraulic machinery Appendix F (normative) Calculation of prototype fly-away characteristics considering friction loss and wind loss of the unit Appendix G (informative) Example of determining the smoothest curve: independent zone method Appendix H (Informative) Example of error source analysis and uncertainty assessment Appendix I (normative) Scale effect of hydraulic efficiency of bucket-type turbines Appendix J (normative) Random error analysis of tests under constant operating conditions Appendix K (normative) Calculation of cavitation system effect 0, for power plants Appendix L (informative) Flow chart of hydraulic specific energy, flow and power Appendix M (informative) Synchronous and asynchronous components of pressure signals Appendix N (informative) Intrinsic frontal force of the hydraulic system Appendix O (informative) Calculation of axial force components 前言 本文件按照 GB/T 1.1202《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定起草。 本文件代替 GB/T 15613.1-2008《水轮机、蓄能泵和水泵水轮机模型验收试验 第一部分;通用规定》GB/T 15613.2-2008《水轮机、蓄能泵和水泵水轮机模型验收试验 第二部分:常规水力性能试验》GB/T 15613.3-2008《水轮机、蓄能泵和水泵水轮机模型验收试验 第三部分:辅助性能试验》和GB/T 10969-2008《水轮机、蓄能泵和水泵水轮机通流部件技术条件》,与 GB/T 15613,1-2008.GB/T 15613.2-2008,GB/T 15613.3-2008 和 GB/T 10969-2008 相比,除结构调整和编辑性改动外,主要技术变化如下: 更改了空化系数的定义(见 3.4.7,GB/T 15613.1一2008 中的 3.3.6);a) 更改了压力脉动名词术语和分析方法(见 3.4.11,GB/T 15613.1-2008 中的 3.3.10):b) c)更改了模型和原型尺寸检查方法和检查工具(见 5.2.1,5.2,3,5.2.4,5.2.5 和 5.2.7,GB/T 10969-2008 中的 4.1、4.2 和 4.5); d) 由于采用了新技术,增加了尺寸检查的精度要求(见 5.2.8); e) 将尺寸检查表进行合并简化(见 5,2.10,GB/T 10969-2008 中的 4.7.1.6,4.7.2.3 和4.7.3.5);d更改了原型波浪度的要求(见 5.2.11.2,GB/T 10969一2008 中的 4.8.2); 更改了粗糙度的测量方法(见 5.2.11.3,C2/T 10969一2008 中的 4.8.1);更改了空化试验中气核含量的测量方法/基准(见 5.7.3.2.2,GB/T 15613.1-2008 中的h)5.5.3.2) : 更改了流量测量方法(见 6.2,CB/T 15613.2一2008 中的 5.2);2 增加了准确测量模型压力脉动分析时间的要求(见 7.2.1.2.4); k) 更改了将模型压力脉动测量值换算到原型的方法(见 7.2.2.8,GB/T 15613.3-2008 中 的 5.1.7); 更改了对径向推力的换算方法(见 7.3,GB/T 15613.3一2008 中的 5.3.3);1 m) 更改了控制部件水力载荷试验(见 7.4,GB/T 15613.3-2008 中的 5.4): 更改了拓展运行范围内的试验方法(见 7.5,GB/T 15613.3-2008 中的 5.5):n ) 更改了指数试验相关内容(见 7.6,GB/T 15613.3-2008 中的 5.6);0增加了 IEC 62097:2019 涉及的一种新的水力性能换算方法(见附录 E): 1范围 本文件适用于在实验室条件下试验的冲击式和反击式的水轮机、蓄能泵和水泵水轮机。本文件适用于机组功率大于 5 MW 或公称直径大于 3 m 的原型对应的模型。将本文件所规定的程序完全地应用于机组功率或公称直径较小的水轮机,一般来说并不合适。但若供需双方认可,则此类水力机械上也可参照执行。 在本文件中,术语“水轮机”包括以水轮机方式运行的水泵水轮机,术语“水泵”包括以水泵方式运行的水泵水轮机。 除与试验有关的事项之外,本文件不包括纯商业利益的事项。 只要机械的结构或部件不影响模型的性能或模型与原型间的相互关系,那么本文件既不涉及水力机械的详细结构,也不涉及水力机械部件的机械性能。 本文件规定了验证水轮机、蓄能泵和水泵水轮机的主要水力性能是否满足合同保证值(见 4.2)所进行的模型验收试验的有关事项。 如果对试验的任何步骤持异议,可参看本文件,它包含了指导试验进行的规则和描述了所采取的测量方法。 本文件的主要目的是: 一定义所使用的术语和参数; 一为了确定模型的水力性能,规定试验方法和所涉及的测量参数: -规定结果的计算方法以及与保证值的比较方法: 确定本文件所规定范围内的合同保证值是否得到满足: 定义最终报告的范围、内容和结构。 保证值可以以下列方式之一给出: 原型水力性能保证值,考虑比尺效应后根据模型试验结果计算获得;模型水力性能的保证值。 此外,为了水轮机原型的设计或运行,也需要确定一些辅助性能数据(见 4.4)。与第 4 章~第 6 章对主要水力性能的要求不同,第 7 章给出的有关辅助性能数据的信息对使用者仅具有建议或指导性质(见 7.1)。 如果现场验收试验(见 GB/T 20043-2005)的预期条件不能验证原型的保证值,更推荐进行模型验收试验。 2规范性引用文件 下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 3505-2009产品几何技术规范(GPS) 表面结构 轮廓法 术语、定义及表面结构参数(ISO 4287:1997,IDT) ISO 2186 封闭管道中流体流量的测量 一次装置和二次装置之间压力信号传送的连接法(Fluidflow in closed conduits-Connections for pressure signal transmissions between primary and secondaryelements) 注:GB/T 26801-2011 封闭管道中流体流量的测量一次装置和二次装置之间压力信号传送的连接法(ISO 2186:2007.1DT) ISO 2533 标准大气(Standard atmosphere) ISO 4185 封闭管道中液体流量的测量 称重法 3术语和定义、符号和单位 3.1通则 本文件将采用下列通用的术语和定义。特殊术语将在出现处给予解释。 供需双方在试验前应对有异议的术语、定义或度量单位做出澄清。 3.2通用术语 3.2.1 试验点 point 在不改变运行条件和设置的情况下,由一组或多组连续的读数和/或记录组成,它足以计算出在该运行条件和设置下水力机械的性能。 3.3单位 本文件采用国际单位制(SI,见 ISO 80000-4)。 所有术语都以 SI基本单位或由此导出的相关单位表示”。使用这些单位时,基本方程是有效的。当某些数据使用与 SI非相关的其他单位时,也需考虑这种情况(例如,在功率中用千瓦代替瓦,在压力中用千帕或巴代替帕,在转速中以分代替秒等)。因为绝对温度(以开尔文表示)很少使用,所以温度以摄氏度表示。 仅在供需双方以书面形式同意的情况下,可以使用任何其他单位制。 3.4 术语、符号和单位 3.4.1 术语和定义汇总表 4 水力性能保证值的性质和范围 4.1 通则 4.1.1 设计数据及商定值 需方应对基于保证值的如基准断面、水位、水力比能(见 3.4.7.1)、水力比能损失等规定数据负责。需方还应负责对水力机械的输水发电系统管道、电气和机械部分相互作用方面进行协调。需方至少应向水力机械供方提供下列精确并足够详细的数据: 4.2 通过模型试验验证的主要水力性能的保证值 4.2.1 各种类型水力机械的保证量 4.2.1.1 功率 术语“功率”通常指转轮/叶轮的机械功率(见 3.4.9.3)。当保证原型的机械功率(见 3.4.9.2)时,应考虑原型的机械功率损失(见 3.4.9.4)。 4.2.1.2 流量和/或比能 4.3模型试验不能验证的保证值 4.3.1空蚀的保证 空蚀量只在原型上保证。应根据 IEC 60609(所有部分)对原型的保证值进行评估。在模型试验中.通过可视观察可以发现一些空蚀的潜在区域(见5.5.3.6) 5 试验的执行 5.1 对试验台和模型的要求 5.1.1 实验室的选择 中国标准 在总体布置、能力和仪器质量方面能够满足本文件规定的实验室宜是合格的。对同一个工程的不同供方的模型进行比较试验时,宜选择一个中立实验室。 5.1.2 试验台 5.1.2.1 试验回路的一般特性 当模型出现空化现象时,试验回路其他部位不应发生影响试验台或模型性能测量装置的稳定性或正常运行的空化现象。 模型中所有夹带的气泡不应影响测量仪器的性能.特别是流量和压力测量装置。 在流量测量仪器和试验模型之间,应无外部流量补人和内部流量泄漏。这些要求宜易于验证。 5.1.2.2 试验台能力 试验台能力(例如功率、压力、水力比能、流量和 NPSE)应满足5.4.2 中列出模型最小尺寸和试验条件的要求。 试验台运行应是稳定和稳态的,没有波动或脉动的影响(见 5.4.3)。 6 主要水力性能的测量和计算方法 6.1 数据采集和处理 6.1.1 概述 数据采集和处理通过由传感器、多路转换器、信号转换器或信号调理器、数据存储器和计算机几个部分组成的测量链,将被测的物理信号转化为适当的工程量,最终输出是将参数表示为有意义的性能数据。 6.2 流量测量 6.2.1 总则 在水力机械流道和流量测量设备之间宜无外部流量补人和内部流量泄露。如果存在其他流量,应对其进行单独测量。 模型验收试验期间流量测量方法分为原级方法和次级方法。 7辅助性能试验一-测量方法和结果 7.1 辅助试验数据测量说明 7.1.1 通则 4.4 中定义的辅助性能试验数据(力矩、力、压力脉动等)可为水电站中的水力机械的设计和运行提供信息。因此需进行辅助类性能数据的测量,并予以规定。 水力机械的每个工况点,不论是稳态还是瞬态,都可以通过机械量和水力量(通常具有振荡特性)来描述。模型通常在稳态条件运行,宜通过模型模拟原型的瞬态过程,但其数据只能从一系列稳态条件下的试验数据得出。 7.2.1 说明了 6.1 规定之外的数据采集和处理要求。 如果模型的某些辅助性能数据可根据相似的水力机械中以足够精度预估得出,则通常无需对其进行测量(例如叶片和导叶力矩、径向推力等)。辅助数据的测量应根据技术大纲确定(见 5.5.3.2)。水力机械应视作整个水电设施的一个组成部分,宜对水力系统固有频率激振引起的不稳定运行进行研究。通过模型试验可确定不同工况下水力机械激振的频率和振型。7.2.2 和 7.2.3 涉及相关的确认程序。 对于原型的结构设计,作用在原型各部件上的水力载荷,可根据模型试验数据使用合适的换算定律进行换算得出。7.3 和 7.4 说明了获得上述水力载荷平均值和动态分量的方法和试验条件。 开机、关机和/或所有工况转换都将导致机组远离“正常”运行范围进入瞬态运行工况。因此,在某些情况下,应研究此拓展运行范围内的水力和机械相关量。7.5 涉及拓展的运行范围内水力性能测量(即水泵水轮机的四象限特性)。 附录 A (资料性)无量纲术语 附录 B(规范性)物理特性、数据 附录 C(资料性)试验和计算程序汇总 附录 D(规范性)反击式机械水力效率的比尺效应 附录 E(资料性)GB/T 15613 和 IEC 6209?.2019 关于反击式水力机械水力效率换算方法的比较 附录 F(规范性)考虑机组摩擦损失和风损的原型飞逸特性的计算 附录 G(资料性)确定最光滑曲线的示例:独立区段法 附录 H (资料性)误差源分析和不确定度评估的示例 附录 I(规范性)水斗式水轮机水力效率的比尺效应 附录J(规范性)恒定运行条件下试验的随机误差分析 附录 K(规范性)电站空化系效0,的计算 附录L (资料性) 水力比能、流量和功率的流程图 附录 M(资料性) 压力信号的同步和异步分量 附录 N (资料性)水力系统的固有额蕊 附录 O(资料性) 轴向力分量的计算 会考文献
|
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB/T 42313-2023, GB 42313-2023, GBT 42313-2023, GB/T42313-2023, GB/T 42313, GB/T42313, GB42313-2023, GB 42313, GB42313, GBT42313-2023, GBT 42313, GBT42313 |