![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This standard is developed in accordance with the rules given in GB/T 1.1-2009. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The issuing body of this document shall not be held responsible for identifying any or all such patent rights. This standard was proposed by and is under the jurisdiction of the National Technical Committee on Information Technology of Standardization Administration of China (SAC/TC 28). Information technology - Radio frequency identification - Conformance test methods for air interface at 800/900MHz 1 Scope This standard specifies the conformance test method for air interface of radio frequency identification at 840~845MHz and 920~925MHz based on GB/T 29768-2013. This standard is applicable to the conformance test for air interface of radio frequency identification device (reader-writer and tag) at 840~845MHz and 920~925MHz. 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. GB/T 29261.3-2012 Information technology - Automatic identification and data capture (AIDC) techniques - Vocabulary - Part 3: Radio-frequency identification GB/T 29768-2013 Information technology - Radio frequency identification - Air interface protocol at 800/900MHz 3 Terms, definitions, symbols and abbreviations 3.1 Terms and definitions For the purposes of this document, the terms and definitions given in GB/T 29261.3-2012 apply. 3.2 Symbols For the purposes of this document, the symbols given in GB/T 29768-2013 and the followings apply. PW pulse width. Target check flag. GI antenna gain. Tc the reference time of forward link. Tpri the reference clock cycle of communication link from the tag to the reader-writer TRext the lead signal indication. dS the distance between reader-writer antenna and test antenna. dTE the distance between reader-writer antenna and tag simulator. Λ the wavelength corresponding to the working frequency. 3.3 Abbreviations For the purposes of this document, the abbreviations defined in GB/T 29768-2013 and the followings apply. AM: amplitude modulation ASK: amplitude shift keying DSB-ASK: double-sideband amplitude shift keying DUT: device under test ID: identifier PSK: phase shift keying RBW: resolution bandwidth SSB-ASK: single-sideband amplitude shift keying VBW: video bandwidth VSWR: voltage standing wave ratio 4 Basic requirements 4.1 Test conditions 4.1.1 Test environment Unless otherwise specified, the test shall be carried out in 23±3℃ environment with a relative humidity of 40% to 60% and without condensation. 4.1.2 Preconditioning Prior to test, place DUT in the test environment for 24h. 4.1.3 Default tolerance Unless otherwise specified, the value tolerance of test equipment characteristics and that generated in test process is ±5%. 4.1.4 Test site Unless otherwise specified, the test shall be carried out in an anechoic chamber. Where the anechoic chamber limits the movement and test distance of the device, it is allowed to carry out the test in an open test environment. See Annex A for the test site. 4.1.5 Noise level at the test position Measure the noise level at the test position with spectrum analyzer for at least 1min under the condition same as the test condition of DUT. At a measurement bandwidth of 10kHz, the maximum noise level is -60dBm within the frequency range of 0.5~2GHz while -90dBm within the working frequency range of 800~960MHz. Special attention shall be paid to spurious emission, such as the computer display that is not adequately shielded. 4.1.6 Expanded uncertainty The expanded uncertainty of test quantity specified in the test method shall be stated in the test report. 4.1.7 Relationship between test method and basic standard See Annex B for the relationship between this standard and GB/T 29768-2013. 4.2 Reader-writer test device 4.2.1 Test antenna and directional coupler The test antenna shall have an antenna connector with an impedance of 50Ω. Within the frequency range adopted for the test, the VSWR of antenna shall not be greater than 1.2:1. Directional coupler shall have a three-port device with a impedance of 50Ω. Within the frequency range adopted for the test, the VSWR at the port of directional coupler shall not be greater than 1.2:1, the coupling factor of directional coupler shall not be greater than 10dB and the in-band unevenness shall not be greater than 0.5dB. 4.2.2 Working frequency and modulation test device of reader-writer The working frequency and modulation test device of reader-writer includes test antenna and spectrum analyzer (see 4.4.1), as shown in Figure 1. The distance (dS) between test antenna and reader-writer antenna under test is set as 3λ or 10λ. Figure 1 Working frequency and modulation test device of reader-writer 4.2.3 Demodulation and link time sequence test device of reader-writer Demodulation and link time sequence test device of reader-writer includes tag simulator and digital oscilloscope (see 4.4.2), as shown in Figure 2. In the demodulation and link time sequence test of reader-writer, the tag simulator specified in Annex C shall be placed dTE away from the reader-writer antenna in the normal direction of dominant power radiation of reader-writer antenna and the optimal orientation of received field intensity, and dTE is set as 3λ or 10λ. Figure 2 Demodulation and link time sequence test device of reader-writer 4.2.4 Reader-writer test device with directional coupler Reader-writer test device with directional coupler includes reader-writer antenna, directional coupler, spectrum analyzer, digital oscilloscope and tag simulator, as shown in Figure 3. Reader-writer test device with directional coupler may not only be used for forward link test but also be used for link time sequence test for tag response. The distance (dS) between test antenna and reader-writer antenna is set as 3λ or 10λ. Figure 3 Reader-writer test device with directional coupler 4.2.5 Reference tag The reference tag shall meet the requirements of GB/T 29768-2013 and at least support the mandatory command of GB/T 29768-2013. T1 value of reference tag shall be within the range specified in GB/T 29768-2013. 4.3 Tag test device 4.3.1 Reader-writer antenna and directional coupler Reader-writer antenna shall meet the requirements of Table 1. Table 1 Reader-writer antenna requirements for tag test Symbol Parameter Minimum Maximum L Maximum size of reader-writer antenna 0.1m GI Reader-writer antenna gain 2dBi 8dBi Note: dT is the distance between the center of antenna to the center of tag under test. See 4.2.1 for the requirements of directional coupler. 4.3.2 Demodulation and link time sequence test device of tag Demodulation and link time sequence test device of tag includes reader-writer antenna, directional coupler, spectrum analyzer, digital oscilloscope and vector signal generator, as shown in Figure 4. In the demodulation and link time sequence test, the tag under test shall be placed dS away from the reader-writer antenna in the normal direction of dominant power radiation of reader-writer antenna and the optimal orientation of received field intensity, and dS is set as 3λ or 10λ. Figure 4 Demodulation and link time sequence test device of tag 4.3.3 Backscatter test device of tag Backscatter test device of tag includes reader-writer antenna, directional coupler, spectrum analyzer, digital oscilloscope and vector signal generator, as shown in Figure 5. This device includes two integrated antennas, one is an reader-writer antenna used for the signal emission of vector signal generator while the other is a test antenna connected to spectrum analyzer or digital oscilloscope; they shall be placed in parallel to reduce the signal coupling between them. Backscatter test device of tag is used for testing the return signal of tag. The tag under test shall be placed dS away from the reader-writer antenna in the normal direction of dominant power radiation of reader-writer antenna and the optimal orientation of received field intensity, and dS is set as 3λ or 10λ. Figure 5 Backscatter test device of tag 4.3.4 Reader-writer for test Reader-writer for test shall meet the mandatory functions specified in GB/T 29768-2013. For a reader-writer used for test, T2, T3 and T4 shall meet the requirements of GB/T 29768-2013, and its working frequency shall be within 840~845MHz and 920~925MHz; it shall be able to demodulate FM0 baseband coding, Miller baseband coding and subcarrier modulation, and shall be able to provide anti-collision test function according to the requirements of 6.1, GB/T 29768-2013. 4.4 General test device 4.4.1 Spectrum analyzer The spectrum analyzer shall have a RBW of 30kHz, a VBW of 100kHz, and its minimum bandwidth shall support Octal Data Rate. During test, the maximum peak shall be used for demodulation, the bandwidth with resolution of 1kHz shall be used for testing the amplitude signal or noise 3dB higher than the noise level of spectrum analyzer; with an accuracy of ±2dB, it shall be able to test the signal which is 90dB higher than the current signal level and has a deviation of 10kHz from the current signal; it shall be able to realize the ±1dB relative amplitude test and be able to display and distinguish two signals with a frequency deviation of 1kHz. Where the spectrum analyzer fails to have the vector analysis function required for the test, software analysis method after sampling may be adopted. 4.4.2 Digital oscilloscope The adopted digital oscilloscope shall at least have a sampling rate of 100M/s and an 8-bit resolution; otherwise, the digital oscilloscope shall at least have a bandwidth of 1GHz and sampling rate of 5G/s. 4.4.3 Vector signal generator The vector signal generator shall have a level resolution of at least 0.1dB and parasitic harmonic of less than -30dB, AM depth supports 0%~100%; AM shall have a resolution of at least 0.1%, a distortion of less than 2%, an evenness of less than 0.3dB, frequency accuracy of 0.01Hz and VSWR of less than 1.5:1. 5 Conformance test of reader-writer 5.1 Modulation mode and working frequency of reader-writer 5.1.1 Test purpose To verify whether the reader-writer modulates the radio-frequency carrier with DSB-ASK or SSB-ASK mode, whether the reader-writer has a working frequency of 840~845MHz and 920~925MHz, there are totally 40 channels in the frequency band and see 5.2.2, GB/T 29768-2013 for the calculation of channel center frequency. 5.1.2 Test steps Test steps for modulation mode and working frequency of reader-writer are as follows: a) carry out test with the device shown in Figure 1. b) set the reader-writer under test to work at the maximum transmitting power and the supported maximum modulation depth; c) set the working frequency and modulation mode of reader-writer under test according to the parameters of initial test case defined in Table 2; d) set the spectrum analyzer as power-frequency mode and in triggering power waiting; e) reader-writer under test sends a query command and see Table 3 for the command parameters; f) after being triggered by the query command, the spectrum analyzer acquires and saves the sending signal curve; g) verify the modulation mode and working frequency of signal sent by reader-writer under test according to the acquired power-frequency curve; h) change the working frequency and modulation mode of reader-writer under test according to the test case parameters defined in Table 2; repeat steps d)~g) until the working frequency and modulation mode tests of all the 40 channels are completed. Note: where the spectrum analyzer fails to support the demodulation mode of reader-writer, software demodulation mode after sampling may be adopted for analysis of demodulation mode. Table 2 Test case for modulation mode and working frequency of reader-writer S.N. Working frequency/MHz Modulation mode 1~20 840.125+0.25n DSB-ASK 21~40 SSB-ASK 41~60 920.125+0.25n DSB-ASK 61~80 SSB-ASK Notes: 1 n=0~19. 2 Either DSB-ASK or SSB-ASK modulation mode may be selected for test Table 3 Test parameters for query command Data field Command code Condition Session Target TRext Reverse link frequency factor Coding selection Check Parameter 10100100b 01b 11b 1b 1b 0000b 00b CRC-16 Note: Tc=6.25μs or 12.5μs 5.1.3 Test report The test report shall cover the modulation mode supported by the reader-writer under test and the actual working frequency measured under all channels under test. 5.2 Adjacent channel leakage power ratio of reader-writer 5.2.1 Test purpose To verify whether the adjacent channel power ratio of reader-writer meets the requirements of 5.2.4, GB/T 29768-2013: the first adjacent channel leakage ratio shall be less than -40dB and the second adjacent channel leakage ratio shall be less than -60dB. 5.2.2 Test steps Test steps for adjacent channel leakage power ratio of reader-writer are as follows: a) connect the port of reader-writer antenna under test to the spectrum analyzer via attenuator; b) set the center frequency of the spectrum analyzer to the working frequency of the reader-writer under test, set the frequency span (recommended as greater than 5 times the channel bandwidth) and the resolution bandwidth (recommended as 10kHz); set the parameter for adjacent channel leakage ratio of the spectrum analyzer, set channel spacing as 250kHz, frequency offset as ±250 kHz and channel power integral bandwidth as 250kHz; c) turn on the reader-writer under test, which will then work on a fixed channel to continuously transmit modulating signal; d) set the spectrum analyzer in power-frequency mode, acquire the signal of reader-writer under test and measure the value of adjacent channel power ratio; e) select high, medium and low channels and then repeat steps c) and e). 5.2.3 Test report The test report shall cover the working frequency and Tc value of modulating signal of high, medium and low channels as well as the leakage ratios of the first and second adjacent channels measured accordingly. 5.3 Radio-frequency signal envelope of reader-writer when it switches on/off carrier 5.3.1 Test purpose To verify that whether radio-frequency signal envelope meets the requirements of 5.2.5, GB/T 29768-2013, when the reader-writer switches on/off the carrier: the rising time of the radio-frequency envelope shall be within the range of 1μs to 500μs when the carrier is switched on, and the overshoot and undershoot of radio-frequency signal envelope ripple shall be not greater than 5% of the carrier signal amplitude; the falling time of the radio-frequency envelope shall be within the range of 1μs to 500μs when the carrier is switched off, and the overshoot and undershoot of radio-frequency signal envelope ripple shall be not greater than 5% of the carrier signal amplitude. 5.3.2 Test steps Test steps for radio-frequency signal envelope of reader-writer when it switches on/off carrier are as follows: a) test with the device shown in Figure 1 or 3, and set the reader-writer under test to the maximum transmitting power; b) set the spectrum analyzer or digital oscilloscope in the power-time mode and in the rising edge triggering waiting; c) the reader-writer under test switches on the carrier, after the carrier rising to the maximum amplitude, it shall remain stable for at least 1500μs; d) collect at least 2000μs signal with spectrum analyzer or digital oscilloscope; e) measure the rising time of radio-frequency signal envelope of reader-writer under test, overshoot and undershoot of radio-frequency signal envelope ripple; f) set the spectrum analyzer or digital oscilloscope in the power-time mode and collect signal in the falling edge triggering mode; g) the reader-writer under test switches off the carrier, after the carrier falling to the minimum amplitude, it shall remain stable for at least 1500μs; h) collect at least 2000μs signal with spectrum analyzer or digital oscilloscope; i) measure the falling time of radio-frequency signal envelope of reader-writer under test, overshoot and undershoot of radio-frequency signal envelope ripple. See the requirements in Figure 2, 5.2.5, GB/T 29768-2013 for the measurement of rising and falling time, overshoot and undershoot of envelope ripple; the measurement of rising and falling time shall be started and ended at 10% and 90% of the radio-frequency signal amplitude. 5.3.3 Test report The test report shall cover the radio-frequency envelope rising time, overshoot and undershoot of radio-frequency signal envelope ripple when the carrier is switched on while shall cover the radio-frequency envelope falling time, overshoot and undershoot of radio-frequency signal envelope ripple when the carrier is switched off. 5.4 Radio-frequency signal envelope from reader-writer to tag 5.4.1 Test Purpose To verify whether the radio-frequency signal envelope from reader-writer to tag meets the requirements of 5.2.6, GB/T 29768-2013: the modulation depth shall be within the range of 30% to 100%, the overshoot and undershoot of radio-frequency envelope ripple shall be not greater than 5% of the radio-frequency signal amplitude, the rising time of radio-frequency signal envelope shall be within the range of 1μs to 0.66Tc, the falling time of radio-frequency signal shall be within the range of 1μs to 0.66Tc, and the pulse width shall be within the range of 0.5Tc to 1.1Tc. 5.4.2 Test steps Test steps for radio-frequency signal envelope from reader-writer to tag are as follows: a) test with the device shown in Figure 1 or 3, and set the reader-writer under test to the maximum transmitting power; b) the reader-writer works in the supported working channel, which is channel 0 by default. See Table 4 for the modulation mode, reference time Tc of forward link and setting of modulation mode. c) set the frequency spectrum analyzer or digital oscilloscope in the power-time mode and in the falling edge triggering waiting; d) the reader-writer under test sends query command, and see Table 3 for the command parameters; e) the spectrum analyzer or digital oscilloscope collects the complete query command signal; f) measure the modulation depth of reader-writer under test, rising and falling time of radio-frequency signal envelope, overshoot and undershoot of radio-frequency signal envelope ripple and pulse width; g) change the modulation mode of the reader-writer under test, reference time Tc of forward link and modulation depth, and repeat steps a)~f) until all test cases in Table 4 have been tested; h) change the center frequency of the spectrum analyzer and the working channel of the reader-writer under test, and repeat steps a)~g). See the requirements in Figure 3, 5.2.6, GB/T 29768-2013 for the measurement of pulse width, overshoot and undershoot of envelope ripple; the measurement of pulse width shall be started and ended at 50% of rising and falling envelope of pulse. Table 4 Test cases for radio-frequency signal envelope from reader-writer to tag S.N. Modulation mode Tc/μs Modulation depth /% 1 DSB-ASK or SSB-ASK 6.25 Minimum modulation depth supported by the reader-writer 2 Maximum modulation depth supported by the reader-writer 3 12.5 Minimum modulation depth supported by the reader-writer 4 Maximum modulation depth supported by the reader-writer 5.4.3 Test report The test record shall cover the modulation mode and depth, Tc time, overshoot and undershoot of radio-frequency signal envelope ripple, rising and falling time of radio-frequency signal envelope and pulse width. 5.5 Reader-writer data coding 5.5.1 Test purpose To verify whether the reader-writer data coding meets the requirements of 5.2.7, GB/T 29768-2013: symbol ‘00’ has a duration of 2Tc, symbol ‘01’ has a duration of 3Tc, symbol ‘11’ has a duration of 4Tc, and symbol ‘10’ has a duration of 5Tc; the length tolerance of these four symbols is ±1%; Tc may be taken as 6.25μs or 12.5μs, and the length tolerance is ±1%. 5.5.2 Test steps Test steps for reader-writer data coding are as follows: a) test with the device shown in Figure 1 or 3, and set the reader-writer under test to the maximum transmitting power; b) the reader-writer under test works in the supported working channel, which is channel 0 by default; see Table 4 for the modulation mode, reference time Tc of forward link and the setting of modulation mode; c) set the frequency spectrum analyzer or digital oscilloscope in the power-time mode and in the falling edge triggering waiting; d) the reader-writer under test sends query command, and see Table 3 for the command parameters; e) the spectrum analyzer or digital oscilloscope collects the complete query command signal; f) measure the duration of symbols ‘00’, ‘01’, ‘10’ and ‘11’ in query command; g) change the modulation mode of the reader-writer under test, reference time Tc of forward link and modulation depth, and repeat steps a)~f) until all test cases in Table 4 have been tested; h) change the center frequency of the spectrum analyzer and the working channel of the reader-writer under test, and repeat steps a)~g). See Figure 6 for the measurement of symbol length, and the measurement shall be started and ended at 50% of the rising envelope of the previous symbols and rising and falling envelope of this symbol. Figure 6 Example for data coding measurement 5.5.3 Test report The test report shall cover the modulation mode and depth, Tc time, length of symbols ‘00’, ‘01’, ‘10’ and ‘11’ and the calculated length tolerance. 5.6 Lead code of reader-writer 5.6.1 Test purpose To verify whether the lead code of reader-writer meets the requirements of 5.2.8, GB/T 29768-2013: the duration of the separator in lead code of the reader-writer is 12.5μs, the length tolerance of the separator is ±5%; the duration of the 1st calibration symbol is 8Tc, the duration of the 2nd calibration symbol is 2Tc, and the length tolerance of them are ±1%. 5.6.2 Test steps Test steps for lead code of reader-writer are as follows: a) test with the device shown in Figure 1 or 3, and set the reader-writer under test to the maximum transmitting power; b) the reader-writer under test works in the supported working channel, which is channel 0 by default, and see Table 4 for the modulation mode, reference time Tc of forward link and the setting of modulation mode; c) set the spectrum analyzer or digital oscilloscope in the power-time mode and in the falling edge triggering waiting; d) the reader-writer under test sends query command, and the command parameters are shown in Table 3. e) the spectrum analyzer or digital oscilloscope collects the complete query command signal; f) measure the duration of the lead code separator, 1st calibration symbol and 2nd calibration symbol of the query command; g) change the modulation mode of the reader-writer under test, reference time Tc of forward link and modulation depth, and repeat steps a)~f) until all test cases in Table 4 are tested; h) change the center frequency of the spectrum analyzer and the working channel of the reader-writer under test, and repeat Steps a)~f). See Figure 7 for the length measurement of separator, 1st calibration symbol and 2nd calibration symbol; the length measurement of separator shall start and stop at 50% of the rising and falling envelope of separator; the length measurement of calibration symbols shall start and stop at 50% of the rising envelope of the former symbol and the falling envelope of this symbol. Figure 7 Example for lead code measurement 5.6.3 Test report The test report shall cover the modulation mode, modulation depth, Tc time, lengths of separator, 1st calibration symbol and 2nd calibration symbol, and the calculation of length tolerance. 5.7 Demodulation and decoding of reader-writer 5.7.1 Test purpose To verify whether the demodulation of reader-writer meets the requirements of 5.3.2, GB/T 29768-2013: the reader-writer shall be able to demodulate tag backscatter modulated by ASK and/or PSK; to verify whether the reader-writer is able to decode the signals under different encoding of the tags specified in 5.3.3, GB/T 29768-2013. 5.7.2 Test steps Test steps for demodulation and decoding of reader-writer are as follows: a) test with the device shown in Figure 2 or 3; b) set the reader-writer under test to work at the maximum transmitting power and the supported maximum modulation depth; c) the reader-writer works in the supported working channel (channel 0 by default) and modulation mode; d) set the lead code parameters of the reader-writer according to the parameters of the first test case in Table 6; e) the reader-writer under test sends the query command, of which, the content is shown in Table 5; set the query command parameters according to the first test case of TRext, reverse link frequency factor and coding selection parameters in Table 6; f) set the digital oscilloscope in the power-time mode and in the power triggering waiting; g) after receiving the query command sent by the reader-writer under test, the tag simulator automatically backscatters the response of an 11-bit random number and 5-bit calibration by ASK or PSK modulation; the response rate and coding method shall meet the requirements of the query command received; h) if the reader-writer under test successfully receives the tag simulator response of an 11-bit random number and 5-bit calibration, a command for acquiring code will be automatically sent, the content of which is shown in 6.5.8, GB/T 29768-2013; i) use digital oscilloscope to collect the power-time curve of demodulation; j) for the test cases in Table 6, change Tc, TRext, reverse link frequency factor and coding selection parameters in turn, and repeat steps f)~i). Table 5 Parameters of query command Data field Command code Condition Session Target TRext Reverse link frequency factor Coding selection Check Parameter 10100100b 00b 00b 0b See Table 6 See Table 6 See Table 6 CRC-16 Table 6 Measurement parameters for demodulation and decoding of reader-writer Parameter type Parameter content Lead code parameter Tc 6.25μs 12.5μs Start query command Parameter TRext 0b 1b Reverse link frequency factor 0000b 0001b 0010b 0011b 0100b 0101b 0110b 0111b Coding selection 00b 01b 10b 11b 5.7.3 Test report The test report shall cover the working channel and modulation depth of reader-writer as well as the results of the reader-writer sending commands for acquiring codes under different lead code parameters and query command parameters. Foreword i 1 Scope 2 Normative references 3 Terms, definitions, symbols and abbreviations 3.1 Terms and definitions 3.2 Symbols 3.3 Abbreviations 4 Basic requirements 4.1 Test conditions 4.2 Reader-writer test device 4.3 Tag test device 4.4 General test device 5 Conformance test of reader-writer 5.1 Modulation mode and working frequency of reader-writer 5.2 Adjacent channel leakage power ratio of reader-writer 5.3 Radio-frequency signal envelope of reader-writer when it switches on/off carrier 5.4 Radio-frequency signal envelope from reader-writer to tag 5.5 Reader-writer data coding 5.6 Lead code of reader-writer 5.7 Demodulation and decoding of reader-writer 5.8 Link time sequence T2 of reader-writer 5.9 Link time sequence T3 of reader-writer 5.10 Link time sequence T4 of reader-writer 5.11 Reader-writer command 5.12 Multi-tag anti-collision mechanism of reader-writer 5.13 Secure protocol of reader-writer 6 Compliance test for tags 6.1 Tag demodulation 6.2 Working frequency of tags 6.3 Baseband coding and subcarrier modulation of tags 6.4 Lead code of tag 6.5 Reverse link frequency and permissible frequency deviation of tags 6.6 Link time sequence T1 of tag 6.7 Link time sequence T2 of tag 6.8 Tag state transition 6.9 Tag command test 6.10 Anti-collision of tags 6.11 Secure protocols of tags Annex A (Informative) Test site Annex B (Informative) Relationship between test method and basic standard requirements Annex C (Normative) Tag simulator 信息技术 射频识别 800/900 MHz空中接口符合性测试方法 1 范围 本标准依据GB/T 29768—2013规定了840 MHz~845 MHz和920 MHz~925 MHz射频识别空中接口的符合性测试方法。 本标准适用于840 MHz~845 MHz和920 MHz~925 MHz射频识别设备(读写器和标签)的空中接口符合性测试。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 29261.3—2012信息技术 自动识别和数据采集技术 词汇 第3部分:射频识别 GB/T 29768—2013 信息技术 射频识别 800/900 MHz空中接口协议 3术语、定义、符号和缩略语 3.1术语和定义 GB/T 29261.3—2012界定的术语和定义适用于本文件。 3.2 符号 GB/T 29768—2013界定的以及下列符号适用于本文件。 PW脉冲宽度。 Target盘点标志。 GI 天线增益。 Tc 前向链路基准时间。 Tpri 标签到读写器通信链路的基准时钟周期。 TRext 前导信号指示。 dS 读写器天线与测试天线之间的距离。 dTE 读写器天线与标签模拟器之间的距离。 λ 工作频率对应的波长。 3.3 缩略语 GB/T 29768—2013界定的以及下列缩略语适用于本文件。 AM:幅度调制(amplitude modulation) ASK:幅移键控(amplitude shift keying) DSB-ASK:双边带幅移键控(double-sideband amplitude shift keying) DUT:被测设备(device under test) ID:标识符(identifier) PSK:相移键控(phase shift keying) RBW:分辨率带宽(resolution bandwidth) SSB-ASK:单边带幅移键控(single-sideband amplitude shift keying) VBW:视频带宽(video bandwidth) VSWR:电压驻波比(voltage standing wave ratio) 4 基本要求 4.1 测试条件 4.1.1 测试环境 除另有规定外,测试应在23℃±3℃,相对湿度为40%~60%无凝结的环境下进行。 4.1.2预处理 测试前应将DUT在测试环境中放置24 h。 4.1.3默认允差 除另有规定外,测试设备特性和测试过程产生的量值允差为±5%。 4.1.4测试场地 除另有规定外,测试应在电波暗室中进行。当电波暗室限制了设备的移动和测试距离时,允许测试在开阔测试环境下进行。测试场地参见附录A。 4.1.5测试位置的噪声电平 与测试DUT相同条件下,使用频谱分析仪测量测试位置的噪声电平至少1 min。 在10 kHz测量带宽下,噪声电平在0.5 GHz~2 GHz频率范围内最大值为-60 dBm;在800 MHz~960 MHz的工作频率范围内,噪声电平的最大值为-90 dBm。 应特别注意杂散辐射,如未充分屏蔽的计算机显示器。 4.1.6扩展不确定度 测试方法规定的测试量的扩展不确定度应在测试报告中予以说明。 4.1.7测试方法与基础标准要求的关系 本标准与GB/T 29768—2013要求的关系参见附录B。 4.2读写器测试装置 4.2.1 测试天线和定向耦合器 测试天线应带有阻抗为50 Ω的天线连接器。在测试所采用的频率范围内,天线VSWR应不大于1.2:1。 定向耦合器应选用阻抗为50 Ω的三端口器件。在测试所采用的频率范围内,定向耦合器端口的VSWR应不大于1.2:1,定向耦合器的耦合度应不大于10 dB,带内不平坦度应不大于0.5 dB。 4.2.2读写器工作频率及调制测试装置 读写器工作频率及调制测试装置包括测试天线和频谱分析仪(见4.4.1),如图1所示。测试天线与被测读写器天线的距离(dS)设置为3λ或10λ。 频谱分析议 测试天线 被测读写器天线 图1 读写器工作频率及调制测试装置 4.2.3读写器解调和链路时序测试装置 读写器解调和链路时序测试装置包括标签模拟器和数字示波器(见4.4.2),如图2所示。 在读写器解调和链路时序测试时,附录C中规定的标签模拟器应在读写器天线主功率辐射法线方向上、以接收场强的最优朝向、距离读写器天线dTE处放置,dTE设置为3λ或10λ。 数字示波器 标签模拟器 标签模拟器天线 被测读写器天线 图2读写器解调和链路时序测试装置 4.2.4 带定向耦合器的读写器测试装置 带定向耦合器的读写器测试装置包括读写器天线、定向耦合器、频谱分析仪、数字示波器、标签模拟器,如图3所示。带定向耦合器的读写器测试装置既可用于读写器的前向链路的测试,也可用于标签响应的链路时序测试。测试天线与读写器天线的距离(dS)设置为3λ或10λ。 标签模拟器 定向耦合器 测试天线 读写器天线 被测读写器 频谱分析仪 数字示波器 图3 带定向耦合器的读写器测试装置 4.2.5基准标签 基准标签应符合GB/T 29768—2013,至少支持GB/T 29768—2013的必选命令。基准标签的T1值的应在GB/T 29768—2013要求的范围内。 4.3标签测试装置 4.3.1 读写器天线和定向耦合器 读写器天线应满足表1的规定。 表1 用于标签测试的读写器天线要求 符号 参数 最小值 最大值 L 读写器天线最大尺寸 0.1 m GI 读写器天线增益 2 dBi 8 dBi 注:dT是天线中心到被测标签中心的距离。 定向耦合器的要求见4.2.1。 4.3.2标签解调和链路时序测试装置 标签解调和链路时序测试装置包括读写器天线、定向耦合器、频谱分析仪、数字示波器、矢量信号发生器,如图4所示。在标签解调和链路时序测试时,被测标签应置于读写器天线主功率辐射法线方向上、以接收场强的最优朝向、距离读写器天线dS处放置,dS设置为3λ或10λ。 矢量信号发生器 定向耦合器 读写器天线 被测标签 频谱分析仪 数字示波器 图4标签解调和链路时序测试装置 4.3.3 标签反向散射测试装置 标签反向散射测试装置包括读写器天线、定向耦合器、频谱分析仪、数字示波器、矢量信号发生器,如图5所示。该装置中包含两个集成的天线,其中一个用作读写器天线,用于矢量信号发生器的信号发射.另一个用作测试天线连接到频谱分析仪或数字示波器,两个天线平行放置,应减少两个天线间的信号耦合。 标签反向散射测试装置用于测试标签的返回信号。被测标签应置于读写器天线主功率辐射法线方向上、以最优接收场强的朝向、距离读写器天线dS处放置,dS设置为3λ或10λ。 矢量信号发生器 定向耦合器 测试天线 读写器天线 被测标签 频谱分析仪 数字示波器 图5标签反向散射测试装置 4.3.4测试用读写器 测试用读写器应实现GB/T 29768—2013规定的读写器的必选功能。测试用读写器的T2、T3和T4时间应满足GB/T 29768—2013中的要求,工作频率在840 MHz~845 MHz和920 MHz~925 MHz,能够解调FM0基带编码、米勒基带编码以及副载波调制,且能够按照GB/T 29768—2013中6.1要求提供防碰撞测试功能。 4.4通用测试设备 4.4.1频谱分析仪 频谱分析仪的RBW应为30 kHz,VBW应为100 kHz,最小频宽应支持8倍数据速率。测试时应使用最大峰值进行检波,应使用1 kHz分辨率带宽测试高于频谱分析仪噪声电平3 dB的幅度信号或噪声;应能够以±2 dB准确度测试与当前信号10 kHz频率的偏差、比当前信号电平高90 dB的信号;频率标记读精确度应在子带隔离±2%范围内,应能够实现±1 dB的相对幅度测试以及能够显示分辨频率偏差为1 kHz的两个信号。 当频谱分析仪不具备测试所需的矢量分析功能时,可采用采样后软件分析的方法。 4.4.2数字示波器 采用数字示波器.应至少具有100 M/s的采样率和8位的分辨率;否则,数字示波器应至少具有1 GHz的带宽和5 G/s的采样率。 4.4.3矢量信号发生器 矢量信号发生器的电平分辨率至少为0.1 dB,寄生谐波小于-30 dB,AM深度支持0%~100%;AM分辨率至少为0.1%,AM畸变应小于2%,AM平坦度小于0.3 dB,频率准确度应达到0.01 Hz,VSWR应小于1.5:1。 5读写器符合性测试 5.1 读写器调制方式和工作频率 5.1.1测试目的 验证读写器是否使用DSB-ASK或者SSB-ASK方式调制射频载波;验证读写器工作频率是否为840 MHz~845 MHz和920 MHz~925 MHz,频带内共40个信道,信道中心频率计算见GB/T 29768—2013中5.2.2。 5.1.2测试步骤 读写器调制方式和工作频率测试步骤如下: a) 采用图1所示的测试装置进行测试; b)设置被测读写器工作在最大发射功率下和支持的最大调制深度下; c) 按表2中定义的首个测试用例参数设置被测读写器工作频率和调制方式; d) 设置频谱分析仪为功率-频率模式,并处于功率触发等待中; e) 被测读写器发出启动查询命令,命令参数见表3; f) 频谱分析仪被启动查询命令触发后,采集并保存发送信号曲线; g)根据采集到的功率-频率曲线验证被测读写器发送信号的调制方式和工作频率; h)按表2中定义的测试用例参数改变被测读写器工作频率和调制方式,重复步骤d)~g),直至所有40个信道的工作频率和调制方式都测试完毕。 注:当频谱分析仪不支持读写器的调试方式时,可采用采样后软件解调的方式进行解调方式分析。 表2读写器调制方式和工作频率测试用例 序号 工作频率/MHz 调制方式 1~20 840.125+0.25n DSB-ASK 21~40 SSB-ASK 41~60 920.125+0.25n DSB-ASK 61~80 SB-ASK 注1:n=0~19。 注2:DSB-ASK或SSB-ASK调制方式可二者择一进行测试。 表3启动查询命令测试参数 数据域 命令代码 条件 会话 目标 TRext 反向链路速率因子 编码选择 校验 参数 10100100b 01b 11b 1b 1b 0000b 00b CRC-16 注:Tc=6.25 μs或12.5 μs 5.1.3测试报告 测试报告应记录被测读写器支持的调制方式,以及所有被测信道下实际测量的工作频率。 5.2读写器邻信道功率泄漏比 5.2.1 测试目的 验证读写器邻信道功率比是否满足GB/T 29768—2013中5.2.4的要求:第一邻道泄漏比应小于-40 dB,第二邻道泄漏比应小于-60 dB。 5.2.2测试步骤 读写器邻信道功率泄漏比测试步骤如下: a) 被测读写器天线端口通过衰减器与频谱分析仪连接; b)频谱分析仪的中心频率设置为被测读写器的工作频率,设置频率扫宽(建议大于5倍信道带宽)、分辨率带宽(建议为10 kHz);设置频谱分析仪邻信道泄漏比参数,信道间隔为250 kHz,频率偏置分别为±250 kHz,信道功率积分带宽为250 kHz; c) 开启被测读写器,被测读写器工作在固定信道,连续发射调制信号; d)设置频谱分析仪为功率-频率模式,采集被测读写器信号,测量邻信道功率比的数值; e)选择高、中、低三个信道重复步骤c)和e)。 5.2.3测试报告 测试报告应记录测试所选的高、中、低三个信道的工作频率,调制信号的Tc值,以及在对应信道下测量的第一邻道泄漏比和第二邻道泄漏比。 5.3 读写器打开和关闭载波时的射频信号包络 5.3.1 测试目的 验证读写器打开和关闭载波时的射频信号包络是否符合GB/T 29768—2013中5.2.5的要求:打开载波时射频包络的上升时间应在1μs~500μs范围内,射频信号包络纹波过冲应不大于载波信号幅度的5%,射频信号包络纹波欠冲应不大于载波信号幅度的5%;关闭载波时射频包络的下降时间应在1μs~500μs范围内,射频信号包络纹波过冲应不大于载波信号幅度的5%,射频信号包络纹波欠冲应不大于载波信号幅度的5%。 5.3.2 测试步骤 读写器打开和关闭载波时的射频信号包络测试步骤如下: a)采用图1或图3所示测试装置进行测试,将被测读写器设定为最大发射功率; b)设置频谱分析仪或数字示波器为功率-时间模式,并处于上升沿触发等待中; c) 被测读写器打开载波,在载波上升到最大幅度后应保持至少1 500μs的稳定; d)使用频谱分析仪或数字示波器采集至少2 000μs的信号; e) 测量被测读写器射频信号包络的上升时间、射频信号包络纹波过冲和射频信号包络纹波欠冲; f) 设置频谱分析仪或数字示波器为功率-时间模式,下降沿触发方式采集信号; g)被测读写器关闭载波,在载波下降到最小幅度后应保持至少1 500μs的稳定; h)使用频谱分析仪或数字示波器采集至少2 000μs的信号; i) 测量被测读写器射频信号包络的下降时间、射频信号包络纹波过冲和射频信号包络纹波欠冲。 上升时间和下降时间测量、包络纹渡过冲和包络纹波欠冲的测量见GB/T 29768—2013中5.2.5的图2的要求,上升时间和下降时间测量应以射频信号幅度的10%和90%为起止。 5.3.3 测试报告 测试报告应记录打开载波时的射频包络上升时间、射频信号包络纹波过冲、射频信号包络纹波欠冲;关闭载波时射频包络的下降时间、射频信号包络纹波过冲、射频信号包络纹波欠冲。 5.4读写器到标签的射频信号包络 5.4.1 测试目的 验证读写器到标签的射频信号包络是否符合GB/T 29768—2013中5.2.6的要求:调制深度应在30%~100%范围内,射频信号包络纹波过冲应不大于射频信号幅度的5%,射频信号包络纹波欠冲应不大于射频信号幅度的5%,射频信号包络上升时间应在1μs~0.66Tc范围内,射频信号下降时间应在1μs~0.66Tc,脉冲宽度应在0.5Tc~1.1Tc范围内。 5.4.2 测试步骤 读写器到标签的射频信号包络测试步骤如下: a) 采用图1或图3所示测试装置进行测试,将被测读写器设定为最大发射功率; b) 被测读写器工作在支持的工作信道,默认工作信道为信道0。调制方式、前向链路基准时间Tc和调制方式设置见表4; c) 设置频谱分析仪或数字示波器为功率-时间模式,并处于下降沿触发等待中; d)被测读写器发出启动查询命令,命令参数见表3; e) 频谱分析仪或数字示波器采集完整的启动查询命令信号; f) 测量被测读写器的调制深度、射频信号包络上升时间、射频信号包络下降时间、射频信号包络纹波过冲、射频信号包络纹波欠冲和脉冲宽度; g)改变被测读写器的调制方式、前向链路基准时间Tc和调制深度,重复步骤a)~f),直至表4中所有测试用例都测试完毕; h)改变频谱分析仪的中心频率和被测读写器的工作信道,重复步骤a)~g)。 脉冲宽度测量、包络纹波过冲和包络纹波欠冲的测量见GB/T 29768—2013中5.2.6的图3的要求,脉冲宽度测量应以脉冲的上升和下降包络的50%为起止。 表4读写器到标签的射频信号包络测试用例 序号 调制方式 Tc/μs 调制深度/% 1 DSB—ASK或SSB—ASK 6.25 读写器支持的最小调制深度 2 读写器支持的最大调制深度 3 12.5 读写器支持的最小调制深度 4 读写器支持的最大调制深度 5.4.3测试报告 测试报告应记录被测读写器的调制方式、调制深度、Tc时间、射频信号包络纹波过冲、射频信号包络纹波欠冲、射频信号包络上升时间、射频信号包络下降时间、脉冲宽度。 5.5读写器数据编码 5.5.1 测试目的 验证读写器数据编码是否符合GB/T 29768—2013中5.2.7的要求:符号‘00’的持续时间为2Tc,符号‘01’的持续时间为3Tc,符号‘11’的持续时间为4Tc,符号‘10’的持续时间为5Tc,4种符号的长度允差均为±1%;Tc可以取6.25 μs或者12.5μs,长度允差为±1%。 5.5.2 测试步骤 读写器数据编码测试步骤如下: a) 采用图1或图3所示测试装置进行测试,将被测读写器设定为最大发射功率; b)被测读写器工作在支持的工作信道,默认工作信道为信道0,调制方式、前向链路基准时间Tc和调制方式设置见表4; c) 设置频谱分析仪或数字示波器为功率-时间模式,并处于下降沿触发等待中; d)被测读写器发出启动查询命令,命令参数见表3; e) 频谱分析仪或数字示波器采集完整的启动查询命令信号; f) 测量启动查询命令中符号‘00’、符号‘01’、符号‘10’、符号‘11’的持续时间; g)改变被测读写器的调制方式、前向链路基准时间Tc和调制深度,重复步骤a)~f),直至表4中所有测试用例都测试完毕; h)改变频谱分析仪的中心频率和被测读写器的工作信道,重复步骤a)~g)。 符号长度测量见图6,符号长度测量应以前一符号上升包络和本符号上降包络的50%为起止。 前导码 幅度/mV 时间/ms 图6数据编码测量示例 5.5.3测试报告 测试报告应记录被测读写器的调制方式、调制深度、Tc时间、符号‘00’、‘01’、‘10’和‘11’的长度,并计算长度允差。 5.6读写器前导码 5.6.1 测试目的 验证读写器前导码是否符合GB/T 29768—2013中5.2.8的要求:读写器前导码中分隔符的持续时间为12.5μs,分隔符长度允差为±5%,校准符一的持续时间为8Tc,校准符二的持续时间为2Tc,校准符一和校准符二的长度允差均为±1%。 5.6.2 测试步骤 读写器前导码测试步骤如下: a) 采用图1或图3所示测试装置进行测试,将被测读写器设定为最大发射功率; b) 被测读写器工作在支持的工作信道,默认工作信道为信道0,调制方式、前向链路基准时间Tc和调制方式设置见表4; c) 设置频谱分析仪或数字示波器为功率-时间模式,并处于下降沿触发等待中; d)被测读写器发出启动查询命令,命令参数见表3; e) 频谱分析仪或数字示波器采集完整的启动查询命令信号; f) 测量启动查询命令的前导码的分隔符、校准符一、校准符二的持续时间; g)改变被测读写器的调制方式、前向链路基准时间Tc和调制深度,重复步骤a)~f),直至表4中所有测试用例都测试完毕; h)改变频谱分析仪的中心频率和被测读写器的工作信道,重复步骤a)~f)。 分隔符长度测量、校准符一和校准符二长度测量见图7,分隔符长度测量应以分隔符的上升和下降包络的50%为起止,校准符长度测量应以前一符号上升包络和本符号上降包络的50%为起止。 分隔符 校准符一 校准符二 幅度/mV 时间/ms 图7前导码测量示例 5.6.3 测试报告 测试报告应记录被测读写器的调制方式、调制深度、Tc时间、分隔符长度、校准符一长度、校准符二长度,并计算长度允差。 5.7读写器解调和解码 5.7.1 测试目的 验证读写器解调是否符合GB/T 29768—2013中5.3.2的要求:读写器应能解调ASK和(或)PSK调制的标签反向散射;验证读写器是否能够对GB/T 29768—2013中5.3.3规定的标签不同编码下的信号进行解码。 5.7.2 测试步骤 读写器解调和解码测试步骤如下: a) 采用图2或图3所示测试装置进行测试; b)设置被测读写器工作在最大发射功率下和支持的最大调制深度下; c) 读写器工作在支持的工作信道和调制方式下,默认工作信道为信道0; d) 按表6前导码参数中首个测试用例参数设置读写器前导码参数; e)被测读写器发出启动查询命令,命令内容见表5,按表6中TRext、反向链路速率因子、编码选择参数的首个测试用例设置启动查询命令参数; f) 设置数字示波器处于功率—时间模式,并处于功率触发等待中; g)标签模拟器在收到被测读写器发送的启动查询命令后,自动以ASK或PSK调制方式反向散射一个11位随机数和5位校验位的应答,应答的速率和编码方式应符合收到的启动查询命令的要求; h)如果被测读写器成功收到11位随机数和5位校验位的标签模拟器响应,则自动发送一个编码获取命令,命令内容见GB/T 29768—2013的6.5.8; i) 使用数字示波器采集解调的功率—时间曲线; j) 对于表6中的测试用例,依次改变Tc、TRext、反向链路速率因子、编码选择参数,重复步骤f)~i)。 表5启动查询命令参数 数据域 命令代码 条件 会话 目标 TRext 反向链路速率因子 编码选择 校验 参数 10100100b 00b 00b 0b 见表6 见表6 见表6 CRC-16 表6读写器解调和解码测量参数 参数类型 参数内容 前导码参数 Tc 6.25μs 12.5μs 启动查询命令 参数 TRext 0b 1b 反向链路因子 0000b 0001b 0010b 0011b 0100b 0101b 0110b 0111b 编码选择 00b 01b 10b 11b 5.7.3测试报告 测试报告应记录被测读写器的工作信道、调制深度以及在不同的前导码参数和启动查询命令参数下读写器发送编码获取命令的结果。 5.8读写器链接时序T2 5.8.1测试目的 验证读写器链接时序T2是否符合GB/T 29768—2013中5.5的要求:读写器链接时序T2最小为3Tpri,最大为20Tpri。 5.8.2 测试步骤 读写器链接时序T2测试步骤如下: a)采用图2或图3所示测试装置进行测试; b) 设置被测读写器工作在最大发射功率下和支持的最大调制深度下; c) 读写器工作在支持的工作信道和调制方式下,默认工作信道为信道0; d)按表6前导码参数中首个测试用例参数设置读写器前导码参数; e)被测读写器发出启动查询命令,命令内容见表5,按表6中TRext、反向链路速率因子、编码选择参数的首个测试用例设置启动查询命令参数; f) 设置数字示波器处于功率—时间模式,并处于功率触发等待中; g)标签模拟器在收到被测读写器发送的启动查询命令后,自动以ASK或PSK调制方式反向散射一个11位随机数和5位校验位的应答,应答的速率和编码方式应符合收到的启动查询命令的要求; h)如果被测读写器成功收到11位随机数和5位校验位的标签模拟器响应,则自动发送一个编码获取命令,命令内容见表7; i) 使用数字示波器采集解调的功率—时间曲线,测量标签模拟器返回校验位的最后一位结束到读写器编码获取命令分隔符开始的时间间隔,即为T2时间; j) 对于表6中的测试用例,依次改变Tc、TRext、反向链路速率因子、编码选择参数,重复步骤f)~i)。 T2时间测量见图8,测量应以响应结尾上升包络和命令前导码分隔符下降包络的50%为起止。 幅度/mV 时间/ms 图8 T2时间测量示例 5.8.3测试报告 测试报告应记录被测读写器的工作信道、调制深度以及在不同的前导码参数和启动查询命令参数下T2的测量值。 5.9读写器链接时序T3 5.9.1 测试目的 验证读写器链接时序T3是否符合GB/T 29768—2013中5.5的要求:读写器链接时序T3最小为0,且T1+T3应不小于T4。 5.9.2测试步骤 读写器链接时序T3测试步骤如下: a) 采用图2或图3所示测试装置进行测试; b)设置被测读写器工作在最大发射功率下和支持的最大调制深度下; c) 读写器工作在支持的工作信道和调制方式下,默认工作信道为信道0; d)按表8前导码参数中的测试用例参数设置读写器前导码参数; e) 被测读写器发出启动查询命令,命令内容见表7,按表8中反向链路速率因子的首个测试用例设置启动查询命令参数; f) 设置数字示波器处于功率—时间模式,并处于功率触发等待中; g)标签模拟器在收到被测读写器发送的启动查询命令后,自动以ASK或PSK调制方式反向散射一个11位随机数和5位校验位的应答,应答的速率和编码方式应符合收到的启动查询命令的要求; h)验证被测读写器成功收到11位随机数和5位校验位的标签模拟器响应后,是否自动发送一个编码获取命令,命令内容见GB/T 29768—2013的6.5.8; i) 关闭标签模拟器.关闭载波,再重新打开载波; j) 被测读写器发出启动查询命令,命令内容见表7,反向链路速率因子同步骤g)的启动查询命令; k)验证被测读写器是否随后发送一个重复查询命令或分裂命令或收缩命令,命令内容见GB/T 29768—2013的6.5.4、6.5.5和6.5.7; 1) 使用数字示波器采集解调的功率—时间曲线,测量启动查询命令最后一个位结束到下一个命令分隔符开始的时间间隔,即为(T1+T3)时间; m)用步骤1)测量得到的(T1+T3)时间减去相同链路速率条件下GB/T 29768—2013中表6的T1的最大值,即为T3时间; n)对于表8中的测试用例,改变反向链路速率因子,重复步骤f)~m)。 T1+T3时间测量见图9,测量应以启动查询命令结尾上升包络和最后命令前导码分隔符下降包络的50%为起止。 表7启动查询命令参数 数据域 命令代码 条件 会话 目标 TRext 反向链路速率因子 编码选择 校验 参数 10100100b 00b 00b 0b 见表8 见表8 见表8 CRC-16 表8链接时序T3测量参数 参数类型 参数内容 前导码参数 Tc 读写器支持的Tc参数:6.25μs或12.5μs TRext 读写器支持的TRext参数;0b或1b 反向链路因子 0000b 0001b 0010b 0011b 0100b 0101b 0110b 0111b 编码选择 读写器支持的编码方式: 00b、01b、10b或11b 幅度/mV 时间/ms 图9 T1+T3时间测量示例 5.9.3 测试报告 测试报告应记录被测读写器的工作信道、调制深度以及在不同的前导码参数和启动查询命令参数下(T1+T3)的测量值和T3的计算值。 5.10读写器链接时序T4 5.10.1测试目的 验证读写器链接时序T4是否符合GB/T 29768—2013中5.5的要求:读写器链接时序T4最小为3Tc。 5.10.2测试步骤 读写器链接时序T4测试步骤如下: a)采用图1或图3所示测试装置进行测试; b) 设置被测读写器工作在最大发射功率下和支持的最大调制深度下; c) 读写器工作在支持的工作信道和调制方式下,默认工作信道为信道0; d)按表8前导码参数中的测试用例参数设置读写器前导码参数,按反向链路速率因子的首个测试用例设置启动查询命令参数; e) 设置频谱分析仪处于功率—时间模式,并处于功率触发等待中; f) 被测读写器发出分类命令,然后发送启动查询命令,命令内容见表7; g) 使用频谱分析仪采集解调的功率—时间曲线.测量读写器分类命令最后一个位结束到启动查询命令分隔符开始的时间间隔,即为T4时间; h)对于表8中的测试用例,改变反向链路速率因子,重复步骤f)~g)。 T4时间测量见图10,测量应以分类命令结尾上升包络和启动查询命令前导码分隔符下降包络的50%为起止。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 | ||
版权所有: 中译悦尔(北京)翻译有限公司 2008-2040 51La | ||
全国免费电话:800-810-5431 电话:010-8572 5110 传真:010-8581 9515 | ||
Email: bz@bzfyw.com | |
||
本页关键词: | ||
GB/T 35102-2017, GB 35102-2017, GBT 35102-2017, GB/T35102-2017, GB/T 35102, GB/T35102, GB35102-2017, GB 35102, GB35102, GBT35102-2017, GBT 35102, GBT35102 |