![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. In order to adapt to the general rules of international technical regulations and technical standards, the Ministry of Housing and Urban-Rural Development has successively issued documents such as Opinions on Deepening the Reform of Standardization of Engineering Construction since 2016, which put forward the long-term goal of the government to develop mandatory standards and social organizations to develop voluntary standards and define the reform task of gradually replacing the mandatory provisions scattered in current standards with full-text mandatory engineering construction codes, gradually forming a "technical regulations" system composed of technical provisions in laws, administrative regulations and departmental rules and full-text mandatory engineering construction codes. About the types of codes. The mandatory engineering construction code system covers all kinds of construction projects in the field of engineering construction, and is divided into two types, namely engineering project codes (hereinafter referred to as project codes) and general technical codes (hereinafter referred to as general codes). The project codes take the whole engineering construction project as the object, with five major factors, such as project scale, layout, function, performance and key technical measures, as the main content. The general codes take the general technology of each discipline to meet the functional performance requirements of engineering construction projects as the object, with the general technical requirements, such as survey, design, construction, repair and maintenance, as the main content. In the full-text mandatory engineering construction code system, the project codes are the backbone, and the general codes are the common and general professional key technical measures for all kinds of projects. About the five major factor indicators. The factors in the mandatory engineering construction codes are the basic provisions to ensure the systematization and efficiency improvement of urban and rural infrastructure construction, and the basic requirements to support the high-quality development of urban and rural construction. The scale requirements of the project mainly stipulate that the construction project shall have complete production or service capacity and shall adapt to the level of economic and social development. The layout requirements of the project mainly stipulate the industrial layout, site selection of construction projects, overall design, general layout and integrated technical requirements coordinated with the scale. Reasonable distribution of supply capacity shall be considered to improve the overall level of related facilities construction. The functional requirements of the project mainly stipulate the composition and purpose of the project and clarify the basic components of the project, which are the guarantee for the project to play its expected role. The performance requirements of the project mainly stipulate the construction level or technical level of the construction project, reflect the applicability of the construction project, and define the basic level that the project quality, safety, energy conservation, environmental protection, livable environment and sustainable development shall achieve. Key technical measures are the basic technical regulations for realizing the functional and performance requirements of construction projects, and the basic guarantee for implementing the development goals of urban and rural construction such as safety, green, resilience, wisdom, livability, fairness and efficiency. About the implementation of codes. Mandatory engineering construction codes have mandatory binding force, which are the bottom line for ensuring people's life and property safety, personal health, engineering safety, ecological environment safety, public rights and interests as well as promoting energy and resource conservation and meeting economic and social management, must be strictly implemented in the whole process of construction activities such as survey, design, construction, acceptance, repair, maintenance and demolition of engineering construction projects. For existing building renovation projects (meaning that existing use functions are not changed), when the conditions are not available and it is really difficult to implement the current code, the stringency of the code implemented shall not be inferior to that implemented in construction. The voluntary engineering construction standards matching with the mandatory engineering construction codes is a mature technical measure that has been tested by practice and guarantees to meet the requirements of the mandatory codes, and shall also be implemented under normal circumstances. On the premise of meeting the project functional and performance requirements and key technical measures stipulated in mandatory engineering construction codes, relevant group standards and enterprise standards may be reasonably selected to optimize the project function and performance or make them reach a higher level. Voluntary engineering construction standards, group standards and enterprise standards shall be coordinated and match with mandatory engineering construction codes, and all technical requirements shall not be lower than the relevant technical level of mandatory engineering construction codes. After the implementation of the mandatory engineering construction codes, the mandatory provisions in the current national standards and professional standards related to engineering construction shall be abolished at the same time. The mandatory provisions in the current provincial standards for engineering construction shall be revised in time, and shall not be less stringent than the provisions of the mandatory engineering construction codes. If the relevant provisions in current engineering construction standards, including mandatory and voluntary standards, are inconsistent with those of the mandatory engineering construction codes, the provisions of the mandatory engineering construction codes shall prevail. Project code for gas engineering 1 General provisions 1.0.1 The code is formulated to promote the high-quality development of urban and rural gas engineering, prevent and reduce gas safety accidents, ensure the continuous and stable gas supply, and safeguard the personal, property and public safety. 1.0.2 The code must be implemented for the gas engineering projects in cities, towns and villages. The code is not applicable to the following engineering projects: 1 Long-distance gas transmission pipeline engineering project before town gas gate station; 2 Gas engineering projects for internal production in industrial enterprises; 3 Production and utilization engineering project of biogas and straw gas; 4 Gas application projects on marine and inland ships, railway vehicles, automobiles and other means of transportation. 1.0.3 Gas engineering shall realize continuous and stable gas supply and safe operation, and shall follow the following principles: 1 Comply with national policies on energy, ecological environment, land utilization, disaster prevention and mitigation, emergency management, etc.; 2 Guarantee personal, property and public safety; 3 Encourage engineering technology innovation; 4 Actively adopt modern information technology; 5 Improve the quality of engineering construction and the level of operation and maintenance. 1.0.4 Whether the technical methods and measures adopted in the project construction meet the requirements of the code shall be judged by the relevant responsibility subjects. Innovative technical methods and measures shall be demonstrated and meet the performance requirements in the code. 2 Basic requirements 2.1 Scale and layout 2.1.1 The scale of gas used in gas engineering shall be determined according to the conditions of urban and rural development, population scale, user demand and gas supply resources, through market investigation and scientific prediction, and in combination with comprehensive analysis of gas consumption index and gas consumption law. 2.1.2 The selection of gas source shall be based on the national energy policy, follow the principles of energy conservation, environmental protection, stability and reliability, consider the alternative resource conditions, and be determined through technical and economic demonstration. 2.1.3 The gas supply system shall have the gas supply capacity reserve to meet the requirements of peak regulation supply and emergency supply. The gas supply capacity reserve shall be determined according to the requirements of gas supply conditions, supply and demand balance, system dispatching and emergency. 2.1.4 The gas supply system facilities shall be so arranged that it is coordinated with the urban and rural functional structure, and shall meet the needs of urban and rural construction and development, gas industry development and urban and rural safety. 2.2 Construction requirements 2.2.1 The gas supply system shall be provided with stations, pipelines and necessary facilities for operation and maintenance to ensure safe and stable gas supply. The operating process parameters such as pressure and flow shall ensure the safety of the supply system and the normal use of users, and shall meet the following requirements: 1 The supply system shall have the function of timely cutting off under accident conditions, and shall be provided with the measures to prevent overpressure in the pipe network; 2 Gas equipment and pipelines shall have the strength and tightness to withstand the design pressure and temperature; 3 The gas supply pressure shall be stable, and the pressure change before the gas appliance and gas-consuming equipment shall be within the allowable range. 2.2.2 The gas supply system shall be equipped with an information management system, and shall have data collection and monitoring functions. Gas automation control system, basic network facilities and information management system shall meet the requirements for national information security. 2.2.3 Materials and equipment used in gas facilities shall meet the requirements for energy conservation and environmental protection, system medium characteristics, function demands, external environment and design conditions. The pressure of equipment, pipelines and accessories shall not be less than the system design pressure. 2.2.4 Within the design working life, it shall be ensured that the gas facilities operate reliably under normal use and maintenance conditions. When the gas facilities need to be used continuously after the design working life is reached or the gas facilities are damaged by geological disasters, operation accidents or external forces, the gas facilities shall be evaluated for suitability for use. 2.2.5 Measures such as fire prevention, explosion prevention and earthquake resistance shall be taken for gas facilities to effectively prevent accidents. 2.2.6 The pipelines as well as the connection mode of pipelines and equipment shall conform to the medium characteristics and process conditions, and the connection must be tight and reliable. 2.2.7 Conditions of gas accumulation after gas leakage shall not be available at places where gas equipment, pipelines and gas appliances are installed. Gas pipelines, pressure regulating devices and gas appliances with gas relative density greater than or equal to 0.75 shall not be installed in basements, semi-basements, underground boxes, underground utility tunnel and other underground spaces. 2.2.8 The performance parameters of gas appliances and gas-consuming equipment shall be compatible with the characteristics and supply pressure of the gas used, and the use places of gas appliances and gas-consuming equipment shall meet the safe use conditions. 2.3 Operation and maintenance 2.3.1 Gas facilities can only be put into use after the completion acceptance and commissioning are passed. The following conditions must be met before the gas facilities are put into use: 1 Safety facilities to prevent safety accidents shall be put into use at the same time as the main project; 2 Facilities to prevent or reduce pollution shall be put into use at the same time as the main project. 2.3.2 The construction and operation units of gas facilities shall establish and improve the safety management system, formulate the operation and maintenance regulations and accident emergency plan, and arrange full-time safety management personnel. 2.3.3 The construction, operation, maintenance, emergency repair and other places of gas facilities and important gas facilities shall be provided with standardized and obvious safety warning signs. 2.3.4 The operation unit of gas facilities shall be equipped with emergency rescue teams with professional skills without duty interruption, necessary spare parts, repair machines and emergency equipment, and shall set up and announce the 24-h repair service telephone number and other contact information to the public. 2.3.5 A special person shall be assigned for supervision in the operation process where gas facilities may leak gas, and it is not allowed to operate alone. Effective safety measures shall be taken before the cause of gas leakage is found out or the leakage is fixed. 2.3.6 The on-site operation of gas facilities shall meet the following requirements: 1 Operators shall master the knowledge and skills of gas characteristics, related processes and emergency treatment; 2 The operation area shall be marked for the operation or emergency repair operation, and guardrails and warning signs shall be set at the boundary of the area; 3 Operators or emergency repair personnel shall wear anti-static workwear and other protective appliances, and shall not wear or take off protective appliances in the operation area; 4 No kindling such as mobile phones, matches or lighters shall be carried in the operation or emergency repair area, and no clothes that are easy to generate sparks shall be worn. 2.3.7 Process wastes that fail to meet the emission standards during the normal operation of gas facilities shall not be directly discharged. 3 Gas quality 3.0.1 The quality of gas supplied by the gas engineering shall meet the following requirements: 1 It shall comply with the gas classification and quality standards specified by the nation; 2 It shall meet the gas demand and use conditions of all kinds of users; 3 The calorific capacity (calorific value) shall be stable; 4 The component changes shall ensure the normal operation of the gas appliance. 3.0.2 The reference calorific capacity (calorific value) of gas supplied by the system shall be determined, and the change of calorific capacity (calorific value) shall be within ±5% of the reference calorific capacity (calorific value). Gas composition and impurity content, dew point temperature, gas connecting point pressure and other gas quality parameters shall be determined according to gas source conditions and gas demand. 3.0.3 The quality of natural gas and such shale gas, coalbed methane, coal-based natural gas and biomass gas as are delivered according to the quality of natural gas shall meet the following requirements: 1 The quality of natural gas shall meet those specified in Table 3.0.3. Table 3.0.3 Quality indicator of natural gas Gross calorific value (MJ/m3) ≥31.4 Total sulfur (counted by sulfur) (mg/m3) ≤100 Hydrogen sulfide (mg/m3) ≤20 Carbon dioxide (y, %) ≤4.0 Note: The standard reference condition of gas volume in the table is 101.325kPa and 20℃. 2 Under the conditions with the pressure and temperature at the natural gas junction, the hydrocarbon dew point of natural gas shall be 5℃ lower than the lowest ambient temperature; there shall be no solid, liquid or colloidal substances in the natural gas. 3.0.4 The quality of liquefied petroleum gas (LPG) shall meet those specified in Table 3.0.4. Table 3.0.4 Quality indicators of LPG Item Quality indicator Commercial propane Commercial butane-propane mixture Commercial butane Density (15℃)(kg/m3) Reported Vapour pressure (37.8℃)(kPa) ≤1,430 ≤1,380 ≤485 Component Component of C3 hydrocarbons (volume fraction) (%) ≥95 — — Component of C4 and above hydrocarbons (volume fraction) (%) ≤2.5 — — Component of (C3+C4) hydrocarbons (volume fraction) (%) — ≥95 ≥95 Component of C5 and above hydrocarbons (volume fraction) (%) — ≤3.0 ≤2.0 Residue Evaporation residue (mL/100mL) ≤0.05 Oil stain observation Passed Copper corrosion (40℃, 1h) (Rating) ≤1 Total sulfur content (mg/m3) ≤343 Hydrogen sulfide (one of the following requirements shall be met): Lead acetate method None Chromatography (mg/m3) ≤10 Free water None Notes: 1 Non-hydrocarbon compounds other than odorants are not allowed to be added artificially in liquefied petroleum gas; 2 “Passed” means that when droping 0.3mL of solvent-residue mixture liquor on the filter paper with an increments of 0.1mL each time, and observing it in sunlight after 2min, there is no permanent oil ring; 3 "-” means that it is not detectable. 3.0.5 The quality of manufactured gas shall meet the requirements of Table 3.0.5. Table 3.0.5 Quality indicators of manufactured gas Item Quality indicator Lower calorific value1 (MJ/m3) Gas of Category I 2 Gas of Category II 2 >14 >10 Impurities Tar and dust (mg/m3) Hydrogen sulfide (mg/m3) Ammonia (mg/m3) Naphthalene3 (mg/m3) <10 <20 <50 <50×102/P (winter) <100×102/P (summer) Oxygen content 4 (volume fraction) Gas of Category I Gas of Category II <2% <1% Carbon monoxide content 5(volume fraction) <10% Notes: 1 The gas volume (m3) in the table refers to the volume at 101.325kPa and 15℃; 2 Gas of Category I refers to dry distillation gas, and gas of Category II refers to gas from coal gasification and oil gasification (including LPG and those from natural gas reforming). 3 Naphthalene refers to naphthalene and its homologues α -methylnaphthalene and β-methylnaphthalene. On the premise of ensuring no naphthalene precipitation in gas, each region may set its own naphthalene content index according to the soil temperature at the place where the gas pipeline is buried. If the absolute pressure (P) of the pipeline gas transmission point is less than 202.65 kPa, the pressure (P) may not be included in the calculation; 4 Oxygen content refers to the indicator required in the production process of a gas plant. 5 For gas of Category II or gas of Category I mixed with Category II, the carbon monoxide content shall be less than 20% (volume fraction). 3.0.6 If the quality of gas source fails to meet the quality requirements specified in 3.0.2~3.0.5 of the code, the gas shall be processed. 3.0.7 Gas shall have an undesirable odor that can be perceived by people with normal sense of smell so that, in case of any leakage, people can be warned before any danger occurs. 3.0.8 The supplied gas shall be odorized if it fails to meet the provisions of 3.0.7 of the code. The minimum amount of odorizer shall meet the following requirements: 1 In case of non-toxic gas, the gas leaks into the air shall be detectable when it reaches 20% of the lower explosive limit; 2 In case of toxic gas, the gas leaks into the air shall be detectable when it reaches the permissible harmful concentration for human body.; 3 For gas containing toxic carbon monoxide, it shall be detectable when the volume fraction of carbon monoxide in the air reaches 0.02%. 3.0.9 The odorant added to the gas shall meet the following requirements: 1 The odor of odorant shall be distinct from other odors in daily environment. The odorant, after mixing with the gas, shall maintain a distinct odor, which shall disappear slowly after the gas leakage. 2 The odorant and their combustion products shall not be toxic to human body, and shall not corrode or damage the materials and equipment in contact with them. 3 The odorant shall be soluble in water to the extent that its mass fraction is not greater than 2.5%. 3.0.10 When the gas in the gas supply system needs to be mixed with air, the volume fraction of the gas in the mixed gas shall be greater than 2 times its upper explosion limit, and the dew point temperature of the mixed gas shall be lower than the lowest temperature that may be reached on the outer wall of the transmission pipeline by more than 5℃. The hydrogen sulfide content in the mixture shall not exceed 20 mg/m3. Foreword iv 1 General provisions 2 Basic requirements 2.1 Scale and layout 2.2 Construction requirements 2.3 Operation and maintenance 3 Gas quality 4 Gas stations 4.1 Station area 4.2 Process 4.3 Storage tanks and gas cylinders 5 Pipelines and pressure regulating facilities 5.1 Transmission and distribution pipelines 5.2 Pressure regulating facilities 5.3 User pipeline 6 Gas appliances and gas-consuming equipment 6.1 Household gas appliances and accessories 6.2 Commercial gas appliances, gas-consuming equipment and accessories 6.3 Flue gas removal 1 总则 1.0.1 为促进城乡燃气高质量发展,预防和减少燃气安全事故,保证供气连续稳定,保障人身、财产和公共安全,制定本规范。 1.0.2 城市、乡镇、农村的燃气工程项目必须执行本规范。本规范不适用于下列工程项目: 1 城镇燃气门站以前的长距离输气管道工程项目; 2 工业企业内部生产用燃气工程项目; 3 沼气、秸秆气的生产和利用工程项目; 4 海洋和内河轮船、铁路车辆、汽车等运输工具上的燃气应用项目。 1.0.3 燃气工程应实现供气连续稳定和运行安全,并应遵循下列原则: 1 符合国家能源、生态环境、土地利用、防灾减灾、应急管理等政策; 2 保障人身、财产和公共安全; 3 鼓励工程技术创新; 4 积极采用现代信息技术; 5 提高工程建设质量和运行维护水平。 1.0.4 工程建设所采用的技术方法和措施是否符合本规范要求,由相关责任主体判定。其中,创新性的技术方法和措施,应进行论证并符合本规范中有关性能的要求。 2 基本规定 2.1 规模与布局 2.1.1 燃气工程用气规模应根据城乡发展状况、人口规模、用户需求和供气资源等条件,经市场调查、科学预测,结合用气量指标和用气规律综合分析确定。 2.1.2 气源的选择应按国家能源政策,遵循节能环保、稳定可靠的原则,考虑可供选择的资源条件,并经技术经济论证确定。 2.1.3 燃气供应系统应具有满足调峰供应和应急供应的供气能力储备。供气能力储备量应根据气源条件、供需平衡、系统调度和应急的要求确定。 2.1.4 燃气供应系统设施的设置应与城乡功能结构相协调,并应满足城乡建设发展、燃气行业发展和城乡安全的需要。 2.2 建设要求 2.2.1 燃气供应系统应设置保证安全稳定供气的厂站、管线以及用于运行维护等的必要设施,运行的压力、流量等工艺参数应保证供应系统安全和用户正常使用,并应符合下列规定: 1 供应系统应具备事故工况下能及时切断的功能,并应具有防止管网发生超压的措施; 2 燃气设备与管道应具有承受设计压力和设计温度下的强度和密封性; 3 供气压力应稳定,燃具和用气设备前的压力变化应在允许的范围内。 2.2.2 燃气供应系统应设置信息管理系统,并应具备数据采集与监控功能。燃气自动化控制系统、基础网络设施及信息管理系统等应达到国家信息安全的要求。 2.2.3 燃气设施所使用的材料和设备应满足节能环保及系统介质特性、功能需求、外部环境、设计条件的要求。设备、管道及附件的压力等级不应小于系统设计压力。 2.2.4 在设计工作年限内,燃气设施应保证在正常使用维护条件下的可靠运行。当达到设计工作年限或在遭受地质灾害、运行事故或外力损害后需继续使用时,应对燃气设施进行合于使用评估。 2.2.5 燃气设施应采取防火、防爆、抗震等措施,有效防止事故的发生。 2.2.6 管道及管道与设备的连接方式应符合介质特性和工艺条件,连接必须严密可靠。 2.2.7 设置燃气设备、管道和燃具的场所不应存在燃气泄漏后聚集的条件。燃气相对密度大于等于0.75的燃气管道、调压装置和燃具不得设置在地下室、半地下室、地下箱体、地下综合管廊及其他地下空间内。 2.2.8 燃具和用气设备的性能参数应与所使用的燃气类别特性和供气压力相适应,燃具和用气设备的使用场所应满足安全使用条件。 2.3 运行维护 2.3.1 燃气设施应在竣工验收合格且调试正常后,方可投入使用。燃气设施投入使用前必须具备下列条件: 1 预防安全事故发生的安全设施应与主体工程同时投入使用; 2 防止或减少污染的设施应与主体工程同时投入使用。 2.3.2 燃气设施建设和运行单位应建立健全安全管理制度,制定操作维护规程和事故应急预案,并应设置专职安全管理人员。 2.3.3 燃气设施的施工、运行维护和抢修等场所及重要的燃气设施应设置规范、明显的安全警示标志。 2.3.4 燃气设施的运行单位应配备具有专业技能且无间断值班的应急抢险队伍及必需的备品配件、抢修机具和应急装备,应设置并向社会公布24h报修电话和其他联系方式。 2.3.5 燃气设施可能泄漏燃气的作业过程中,应有专人监护,不得单独操作。泄漏燃气的原因未查清或泄漏未消除前,应采取有效安全措施,直至燃气泄漏消除为止。 2.3.6 燃气设施现场的操作应符合下列规定: 1 操作人员应熟练掌握燃气特性、相关工艺和应急处置的知识和技能; 2 操作或抢修作业应标示出作业区域,并应在区域边界设置护栏和警示标志; 3 操作或抢修人员作业应穿戴防静电工作服及其他防护用具,不应在作业区域内穿脱和摘戴作业防护用具; 4 操作或抢修作业区域内不得携带手机、火柴或打火机等火种,不得穿着容易产生火花的服装。 2.3.7 燃气设施正常运行过程中未达到排放标准的工艺废弃物不得直接排放。 3 燃气质量 3.0.1 燃气工程供应的燃气质量应符合下列规定: 1 应符合国家规定的燃气分类和气质标准; 2 应满足各类用户的用气需求和使用条件; 3 发热量(热值)应保持稳定; 4 组分变化应保证燃具正常工作。 3.0.2 系统供应的燃气应确定基准发热量(热值),发热量(热值)变化应在基准发热量(热值)的±5%以内。燃气组分及杂质含量、露点温度和接气点压力等气质参数应根据气源条件和用气需求确定。 3.0.3 天然气及按天然气质量交付的页岩气、煤层气、煤制天然气、生物质气等的质量应符合下列规定: 1 天然气的质量应符合表3.0.3的规定; 表3.0.3 天然气的质量指标 高位发热量(MJ/m3) ≥31.4 总硫(以硫计)(mg/m3) ≤100 硫化氢(mg/m3) ≤20 二氧化碳(y,%) ≤4.0 注:表中气体体积的标准参比条件是101.325kPa,20℃。 2 在天然气交接点的压力和温度条件下,天然气的烃露点应比最低环境温度低5℃;天然气中不应有固态、液态或胶状物质。 3.0.4 液化石油气的质量应符合表3.0.4的规定。 表3.0.4 液化石油气的质量指标 项目 质量指标 商品丙烷 商品丙丁烷混合物 商品丁烷 密度(15℃)(kg/m3) 报告 蒸气压(37.8℃)(kPa) ≤1430 ≤1380 ≤485 组分 C3烃类组分(体积分数)(%) C4及C4以上烃类组分(体积分数)(%) (C3+C4)烃类组分(体积分数)(%) C5及C5以上烃类组分(体积分数)(%) ≥95 ≤2.5 — — — — ≥95 ≤3.0 — — ≥95 ≤2.0 残留物 蒸发残留物(mL/100mL) 油渍观察 ≤0.05 通过 铜片腐蚀(40℃,1h)(级) ≤1 总硫含量(mg/m3) ≤343 硫化氢(需满足下列要求之一): 乙酸铅法 层析法(mg/m3) 无 ≤10 游离水 无 注:1 液化石油气中不允许人为加入除加臭剂以外的非烃类化合物; 2 每次以0.1mL的增量将0.3mL溶剂-残留物混合液滴到滤纸上,2min后在日光下观察,无持久不退的油环为通过; 3 “—”为不得检出。 3.0.5 人工煤气的质量应符合表3.0.5的规定。 表3.0.5 人工煤气的质量指标 项目 质量指标 低热值1(MJ/m3) 一类气2 二类气2 >14 >10 杂质 焦油和灰尘(mg/m3) 硫化氢(mg/m3) 氨(mg/m3) 萘3(mg/m3) <10 <20 <50 <50×102/P(冬天) <100×102/P(夏天) 含氧量4(体积分数) 一类气 二类气 <2% <1% 含一氧化碳5(体积分数) <10% 注:1表中煤气体积(m3)指在101.325kPa,15℃状态下的体积; 2 一类气为煤干馏气,二类气为煤气化气、油气化气(包括液化石油气及天然气改制); 3 萘指萘和它的同系物α-甲基萘及β-甲基萘;在确保煤气中萘不析出的前提下,各地区可以根据当地燃气管道埋设处的土壤温度规定本地区煤气中含萘指标;当管道输气点绝对压力(P)小于202.65kPa时,压力(P)因素可不参加计算; 4 含氧量指制气厂生产过程中所要求的指标; 5 对二类气或掺有二类气的一类气,其一氧化碳含量应小于20%(体积分数)。 3.0.6 当气源质量未达到本规范第3.0.2~3.0.5条规定的质量要求时,应对燃气进行加工处理。 3.0.7 燃气应具有当其泄漏到空气中并在发生危险之前,嗅觉正常的人可以感知的警示性臭味。 3.0.8 当供应的燃气不符合本规范第3.0.7条的规定时,应进行加臭。加臭剂的最小量应符合下列规定: 1 无毒燃气泄漏到空气中,达到爆炸下限的20%时,应能察觉; 2 有毒燃气泄漏到空气中,达到对人体允许的有害浓度时,应能察觉; 3 对于含一氧化碳有毒成分的燃气,空气中一氧化碳含量的体积分数达到0.02%时,应能察觉。 3.0.9 加入燃气中的加臭剂应符合下列规定: 1 加臭剂的气味应明显区别于日常环境中的其他气味。加臭剂与燃气混合后应保持特殊的臭味,且燃气泄漏后,其臭味应消失缓慢。 2 加臭剂及其燃烧产物不应对人体有毒害,且不应对与其接触的材料和设备有腐蚀或损害。 3 加臭剂溶解于水的程度,其质量分数不应大于2.5%。 3.0.10 当燃气供应系统的燃气需要与空气混合后供应时,混合气中燃气的体积分数应高于其爆炸上限的2倍以上,且混合气的露点温度应低于输送管道外壁可能达到的最低温度5℃以上。混合气中硫化氢含量不应大于20mg/m3。 4 燃气厂站 4.1 站区 4.1.1 燃气厂站的单位产量、储存量和最大供气能力等建设规模应根据燃气工程的用气规模和燃气供应系统总体布局的要求,结合资源条件和城乡建设发展等因素综合确定。燃气厂站应按生产或工艺流程顺畅、通行便利和保障安全的要求布置。 4.1.2 液态燃气存储总水容积大于3500m3或气态燃气存储总容积大于200000m3的燃气厂站应结合城镇发展,设在城市边缘或相对独立的安全地带,并应远离居住区、学校及其他人员集聚的场所。 4.1.3 当燃气厂站设有生产辅助区及生活区时,生活区应与生产区分区布置。当燃气厂站具有汽车加气功能时,汽车加气区、加气服务用站房与站内其他设施应采用围护结构分隔。 4.1.4 燃气厂站内大型工艺基础设施和调压计量间、压缩机间、灌瓶间等主要建(构)筑物的设计工作年限不应小于50年,其结构安全等级不应低于二级的要求。 4.1.5 燃气厂站边界应设置围护结构。液化天然气、液化石油气厂站的生产区应设置高度不低于2.0m的不燃性实体围墙。 4.1.6 燃气厂站内建筑物与厂站外建筑物之间的间距应符合防火的相关要求。 4.1.7 不同介质储罐和相同介质的不同储存状态储罐应分组布置,组之间、储罐之间及储罐与建筑物之间的间距应根据储存介质特性、储量、罐体结构形式、维护操作需求、事故影响范围及周边环境等条件确定。 4.1.8 燃气厂站道路和出入口设置应满足便于通行、应急处置和紧急疏散的要求,并应符合表4.1.8的规定。 表4.1.8 燃气厂站出入口设置 厂站类别 区域 对外出入口数量(个) 出入口的间距 (m) 液化石油气储存站、储配站和灌装站 生产区 ≥1 — 当液化石油气储罐总容积>1000m3时,≥2 ≥50 辅助区 ≥1 — 液化天然气供应站 生产区 当液化天然气储罐总容积>2000m3时,≥2 ≥50 压缩天然气供应站 生产区 当压缩天然气供应站储气总容积>30000m3时,≥2 ≥50 4.1.9 燃气相对密度大于等于0.75的燃气厂站生产区内不应设置地下和半地下建(构)筑物,寒冷地区的地下式消火栓设施除外;生产区的地下排水系统应采取防止燃气聚集的措施,电缆等地下管沟内应填满细砂。 4.1.10 液态燃气的储罐或储罐组周边应设置封闭的不燃烧实体防护堤,或储罐外容器应采用防止液体外泄的不燃烧实体防护结构。深冷液体储罐的实体防护结构应适应低温条件。 4.1.11 燃气厂站内的建(构)筑物应结合其类型、规模和火灾危险性等因素采取防火措施。 4.1.12 燃气厂站具有爆炸危险的建(构)筑物不应存在燃气聚积和滞留的条件,并应采取有效通风、设置泄压面积等防爆措施。 4.1.13 燃气厂站内的建(构)筑物及露天钢质燃气储罐、设备和管道应采取防雷接地措施。 4.2 工艺 4.2.1 燃气厂站的生产工艺、设备配置和监测控制装置应符合安全稳定供气、供应系统有效调度的要求,且应技术经济合理。 4.2.2 燃气厂站内燃气管道的设计工作年限不应小于30年。 4.2.3 设备、管道及附件的连接采用焊接时,焊接后的焊口强度不应低于母材强度。 4.2.4 燃气厂站应根据应急需要并结合工艺条件设置全站紧急停车切断系统。当全站紧急停车切断故障处理完成后,紧急停车切断装置应采用人工方式进行现场重新复位启动。 4.2.5 燃气厂站内设备和管道应按防止系统压力参数超过限值的要求设置自动切断和放散装置。放散装置的设置应保证放散时的安全和卫生,不得在建筑物内放散燃气和其他有害气体。 4.2.6 进出燃气厂站的燃气管道应设置切断阀门。燃气厂站内外的钢质管道之间应设置绝缘装置。 4.2.7 液化天然气、液化石油气液相管道上相邻两个切断阀之间的封闭管道应设安全阀。 4.2.8 压缩天然气、液化天然气和液化石油气运输车在充装或卸车作业时,应停靠在设有固定防撞装置的固定车位处,并应采取防止车辆移动的措施。装卸系统上应设置防止装卸用管拉脱的联锁保护装置。 4.2.9 向液化天然气和液化石油气槽车充装时,不得使用充装软管连接。 4.2.10 燃气调压装置及其出口管道、后序设备的工作温度不应低于其材质本身允许的最低使用温度。 4.2.11 燃气厂站内的燃气容器、设备和管道上不得采用灰口铸铁阀门与附件。 4.2.12 储存、输送低温介质的储罐、设备和管道,在投入运行前应采取预冷措施。 4.2.13 燃气膨胀机、压缩机和泵等动力设备应具备非正常工作状况的报警和自动停机功能。 4.2.14 液化天然气和低温液化石油气的储罐区、气化区、装卸区等可能发生燃气泄漏的区域应设置连续低温检测报警装置和相关的联锁装置。 4.2.15 燃气厂站的供电电源应满足正常生产和消防的要求,站内涉及生产安全的设备用电和消防用电应由两回线路供电,或单回路供电并配置备用电源。 4.2.16 燃气厂站仪表控制系统应设置不间断电源装置。 4.2.17 燃气厂站内可燃气体泄漏浓度可能达到爆炸下限20%的燃气设施区域内或建(构)筑物内,应设置固定式可燃气体浓度报警装置。 4.2.18 燃气厂站内设置在有爆炸危险环境的电气、仪表装置,应具有与该区域爆炸危险等级相对应的防爆性能。 4.2.19 燃气厂站爆炸危险区域内,可能产生静电危害的储罐、设备和管道应采取静电导消措施。 4.2.20 进入燃气储罐区、调压室(箱)、压缩机房、计量室、瓶组气化间、阀室等可能泄漏燃气的场所,应检测可燃气体、有害气体及氧气的浓度,符合安全条件方可进入。燃气厂站应在明显位置标示应急疏散线路图。 4.2.21 除装有消火装置的燃气专用运输车和应急车辆外,其他机动车辆不得进入液态燃气储存灌装区。 4.3 储罐与气瓶 4.3.1 液化天然气和容积大于10m3液化石油气储罐不应固定安装在建筑物内。充气的或有残气的液化天然气钢瓶不得存放在建筑内。 4.3.2 燃气储罐应设置压力、温度、罐容或液位显示等监测装置,并应具有超限报警功能。液化天然气常压储罐应设置密度监测装置。燃气储罐应设置安全泄放装置。 4.3.3 液化天然气和液化石油气储罐的液相进出管应设置与储罐液位控制联锁的紧急切断阀。 4.3.4 低温燃气储罐和设备的基础,应设置土壤温度检测装置,并应采取防止土壤冻胀的措施。 4.3.5 当燃气储罐高度超过当地有关限高规定时,应设飞行障碍灯和标志。 4.3.6 燃气储罐的进出口管道应采取有效的防沉降和抗震措施,并应设置切断装置。 4.3.7 燃气储罐的安全阀应根据储存燃气特性和使用条件选用,并应符合下列规定: 1 液化天然气储罐安全阀,应选用奥氏体不锈钢弹簧封闭全启式安全阀。 2 液化石油气储罐安全阀,应选用弹簧封闭全启式安全阀。 3 容积大于或等于100m3的液化天然气和液化石油气储罐,应设置2个或2个以上安全阀。 4.3.8 液态燃气储罐区防护堤内不应设置其他可燃介质储罐。不得在液化天然气、液化石油气储罐的防护堤内设置气瓶灌装口。 4.3.9 严寒和寒冷地区低压湿式燃气储罐应采取防止水封冻结的措施。 4.3.10 低压干式稀油密封储罐应设置防回转装置,防回转装置的接触面应采取防止因撞击产生火花的措施。 4.3.11 不应直接由罐车对气瓶进行充装或将气瓶内的气体向其他气瓶倒装。 4.3.12 气瓶应具有可追溯性,应使用合格的气瓶进行灌装。气瓶灌装后,应对气瓶进行检漏、检重或检压。所充装的合格气瓶上应粘贴规范明显的警示标签和充装标签。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 | ||
版权所有: 中译悦尔(北京)翻译有限公司 2008-2040 51La | ||
全国免费电话:800-810-5431 电话:010-8572 5110 传真:010-8581 9515 | ||
Email: bz@bzfyw.com | |
||
本页关键词: | ||
GB 55009-2021, GB/T 55009-2021, GBT 55009-2021, GB55009-2021, GB 55009, GB55009, GB/T55009-2021, GB/T 55009, GB/T55009, GBT55009-2021, GBT 55009, GBT55009 |